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Figure 1: Prototype body tracking 
system based on inertial/magnetic 
sensors modules. 
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1  Introduction 

Real-time tracking of the orientation or attitude of rigid bodies has wide 
applications in robotics [1], helicopters [2], tele-operation, augmented reality, 
and virtual reality [3]. Limb segment orientation can be estimated through the 
attachment of an inertial/magnetic sensor module to each segment as depicted in 
Figure 1. Given the length of each of the segments, their estimated orientation 
based on sensor module data, and their arrangement relative to one another, the 
posture of the body can be determined. This method of orientation and posture 
estimation is desirable since it is not dependent on any artificially generated 
reference signal and does not suffer from any line of sight  
restrictions [4].  

Inertial/magnetic sensor modules and their associated data filtering 
algorithms are designed to be capable of estimating three degrees of orientation 
over a wide area in a variety of unprepared tracking environments. The sensor 
modules commonly contain three linear accelerometers and three 
magnetometers. The accelerometers are orthogonally mounted in a triad as are 
the magnetometers. Sensor modules designed for more dynamic applications 
may also contain three orthogonally mounted angular rate sensors for use as a 
high frequency data source. Each of the triads is mounted such that there is an 
individual sensor aligned with one of the principle axes of the coordinate frame 
of the sensor module. Thus the total number of sensors contained in modules 
designed to provide data for estimating orientation in dynamic applications is 
commonly nine.  

In orientation estimation algorithms designed to process inertial/magnetic 
sensor data, accelerometers are used to measure the gravity vector relative to the 
coordinate frame of the sensor module. Accelerometers allow accurate 
determination of pitch and roll, but can not be used to sense rotations about the 
gravity or vertical axis. Magnetometers are thus commonly used to measure 
azimuth or rotation in the horizontal plane relative to a “fixed” reference. The 
data from the incorporated sensors is normally fused using a Kalman or 
complementary filtering algorithm. Foxlin et al. describes two commercial 
sensor modules containing accelerometers, magnetometers, and angular rate 
sensors designed for head tracking applications [5],[6]. Sensor fusion is performed using a complementary separate-bias 
Kalman filter. Bachman et al. propose a quaternion-based complementary filter for human body tracking [3], [7]. The filter 
is able to track through all orientations without singularities and continuously correct for bias and drift errors associated 
with low cost angular rate sensors without a need for stationary periods. Gallagher et al. presents a simpler complementary 
filter algorithm with lower computational complexity in [8]. Luinge describes a Kalman filter designed for human body 
tracking applications in [9]. The primary difference between the work presented in this paper and that of Luinge is that 
Luinge does not use magnetometers.  In the absence of magnetometers, drift about the vertical axis is reduced by limiting 
body segment orientation using a kinematic human body model. The kinematic model incorporates biomechanical 
constraints on the joints. This method allows calculation of accurate relative orientation between adjacent segments. The 
proposed Kalman filter is useful for long periods of measurement if only inclination is required. In [10], Zhu and Zhou 
describe a linear Kalman filter algorithm designed to smooth accelerometer and magnetometer readings. Rather than 
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estimating individual limb segment orientations relative to a fixed reference frame, the system determines joint angles in 
axis/angle form using data from the two sensor modules mounted on the two segments adjacent to the joint. Kraft describes 
an “unscented,” quaternion-based Kalman filter for real-time estimation of a rigid body orientation [11]. Simulation results 
demonstrate the general validity of the described filter. Yan and Yuan describe a single frame orientation tracking 
algorithm that uses low cost sensor modules to take two axis measurements of gravity and the local magnetic field [12]. 
Elevation, roll and azimuth angles are sequentially calculated and the method is limited to orientation tracking within a 
hemisphere. In [13], Gebre-Egziabher et al. describe another single frame attitude determination algorithm for aircraft 
applications. The algorithm is based on the QUEST (QUaternion ESTimator) algorithm [14] which was originally designed 
to determine spacecraft attitude given a set of 3-dimensional known reference vectors and their corresponding observation 
or measurement vectors.  In the case of [13], the local magnetic field and gravity vectors are used as reference vectors.  

In the above studies with the exception of the work by Luinge [9], both the gravity and local magnetic field vectors 
are treated as fixed references. In the case of the gravity vector, the assumption that it is fixed leads to no difficulties since 
this vector does in fact point straight down in any inertial frame located on or near the surface of the earth. Making the 
same assumption regarding the local magnetic field vector can however lead to problems. In a typical room setting, the 
direction as well as the magnitude of the local magnetic field vector can be expected to vary due to the presence of ferrous 
objects or electrical appliances.  Relative weighting can be used to reduce the weight applied to magnetometer data in 
comparison to other sensor information. However, slow drift about the vertical axis in the presence of a sustained change in 
the direction of the magnetic field vector will still occur. Reducing the weight given to magnetic data does, however, make 
it possible to reduce orientation errors resulting from transients in the local magnetic field. Such weighting techniques 
allowing manual adjustment of magnetometer gains are described in [3], [5], and [8]. 

This paper describes several experiments designed to examine small scale magnetic interference caused by typical 
objects and how this interference can be expected to affect the accuracy of orientation estimates produced using data from 
inertial/magnetic sensor modules. The results provide insight into the limitations of inertial/magnetic sensor module 
orientation tracking. They indicate that while errors due to local variations in a common room environment caused by 
individual objects can be significant, in most cases they can be avoided by maintaining a separation of approximately one 
meter from the source of interference. The interference caused by combined sources in a noisy indoor environment can 
however be quite complex. The results also indicate that inertial/magnetic sensor modules can be used to track link 
orientation of a mechanical arm relative to an Earth fixed reference frame.  

The remainder of this paper provides a brief background and then presents a series of experiments. Section 2 
describes the sensors used in the experiments, gives a brief overview of magnetic fields, and magnetometer calibration 
methods that can be used to deal with various types of magnetic interference. Section 3 presents data from four different 
experiments in which inertial/magnetic sensor modules are subjected to controlled changes in the magnetic field, exposed 
at varying distances to sources of magnetic interference, and used to track a robotic arm. The final section of the paper 
discusses the implications of the experimental results for the use of inertial/magnetic sensor modules and provides a 
summary.  

 
2  Background 

 
The following paragraphs go deeper into the theory of orientation estimation algorithms designed for 

inertial/magnetic sensor modules and briefly describe three types of sensor modules. Specifically, the modules discussed 
are the InterSense InertiaCube, the MicroStrain 3DM-G, and the MARG III. The MARG III was designed by the authors 
and manufactured by McKinney Technology. Basic background on the ambient magnetic field of the Earth and how it is 
distorted by ferrous objects and electrically powered devices is then provided. Methods of calibrating magnetic field 
variations are then discussed. 

 
2.1  Inertial/Magnetic Sensor Modules 

 
Inertial/magnetic sensor modules have be been fabricated by both industry and university research laboratories. 

Filtering algorithms designed for these sensor modules are based on inertial and magnetic quantities directly related to the 
motion and orientation of a sensor module. Algorithms designed for use with inertial/magnetic sensor modules produce 
accurate orientation estimates by taking advantage of the complementary nature of the sensed quantities in order to 
determine orientation.  

For a static or slow moving rigid-body, accelerometer triad output can normally be averaged (or low pass filtered) for 
a short period of time in order to measure the components of the gravity vector in the sensor coordinate frame. 
Determination of the relationship of the measurement in the sensor coordinate frame to the gravity vector in Earth 
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Figure 2: MARG III inertial/magnetic 
sensor module. 

coordinate frame allows estimation of orientation relative to the horizontal plane. However, in the event that the sensor 
module is rotated about the vertical axis, the projection of the gravity vector on each of the principle axes of the 
accelerometer will not change. Since the accelerometer triad can not be used to sense a rotation about the vertical axis, an 
orthogonally mounted triad of magnetometers can be used to measure the local magnetic field vector in body coordinates 
and allow determination of orientation relative to the vertical. Thus, combining magnetometer data with accelerometer data 
provides a complete method for estimating the orientation.  

Alternatively, assuming the initial orientation of the body is known, integration of the output of a triad of orthogonally 
mounted angular rate sensors provides another method of estimating orientation. If the rate sensors are susceptible to noise 
or bias effects, as is the case for the small low cost sensors used in inertial/magnetic sensor modules, these estimates 
become useless after a short period. To avoid lag or overshoot in dynamic applications, many inertial/magnetic sensor 
filtering algorithms combine high frequency angular rate sensor data with low-frequency accelerometer and magnetometer 
data in a complementary manner to produce continuously accurate orientation estimates in real-time. 

Based on the work of Foxlin, InterSense Inc. developed and marketed a sensor module called the InertiaCube2. The 
primary application for this module is head tracking. Manufacturer’s literature indicates that the InertiaCube2 is capable of 
measuring angular rates, linear accelerations, and the local magnetic field along three axes. Dimensions for the 
InertiaCube2 are 29 mm x 24 mm x 34 mm. Orientation estimates are made by a proprietary extended Kalman filter [5],[6]. 
Manufacturer’s literature lists an accuracy of 1.0 degree and an update rate of 180 Hz.  

The 3DM-G Gyro Enhanced Orientation Sensor also contains a triad of orthogonally mounted angular rate sensors, a 
triad of orthogonally mounted accelerometers, and a triad of orthogonally mounted magnetometers. Sensor data is 
processed by a proprietary filtering algorithm running on an embedded microcontroller. Manufacturer’s literature lists an 
accuracy of +/- 5 degrees for arbitrary orientations. Unlike the InertiaCube2, unscaled as well as scaled raw data output is 
available from this unit. The update rate is 76.6 Hz. Unit dimensions are 65 mm x 90 mm x 25 mm.  

The MARG III sensor module shown in Figure 2 is a research 
prototype developed by the Modeling, Virtual Environments and 
Simulation (MOVES) Institute at the Naval Postgraduate School [15]. 
Primary sensing components for this unit include Tokin CG-L43 ceramic 
rate gyros, Analog Devices ADXL202E micromachined accelerometers, 
and Honeywell HMC1051Z and HMC1052 one and two-axis 
magnetometers. The MARG III sensor module incorporates a Texas 
Instruments MSP430F149 ultra-low-power, 16-bit RISC architecture 
microcontroller. Overall, dimensions are approximately 18 mm x 30 mm x 
25 mm. The sensor module includes a magnetic set/reset circuit to cancel 
magnetometer temperature drift and avoid magnetic saturation effects. 
Various complementary and Kalman filters based on a quaternion 
representation of orientation have been used to process MARG III sensor 
data [3], [16]. Estimation accuracy has been measured to be better than one 
degree.  

2.2  Magnetic Field Variations 
 
Magnetic fields surround permanent magnets or electrical conductors. They can be visualized as a collection of 

magnetic flux lines.  Flux lines are said to emanate from a ‘north’ pole and return to a ‘south’ pole in a magnet. Flux 
density, or magnetic induction, is a measure of the number of flux lines passing through a given cross sectional area. 
Magnetic field strength is a measure of force produced by an electric current or a permanent magnet. Magnetic field 
strength decreases with the cube of the distance from the source. While magnetic field strength and magnetic flux density 
are not the same, they are equal within a vacuum.  Magnetic permeability is a constant of proportionality that exists 
between magnetic induction, and magnetic field intensity. It can be viewed as a measure of how easily magnetic lines of 
flux will pass through a given material. In the presence of an object made of a material with a relatively high permeability, 
magnetic field lines will bend toward or be attracted to the object. Thus distortion can be expected to occur near large 
ferrous objects [17]. 
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Table 1: Common magnetic field magnitudes 
in Gauss at 15 and 30 cm adapted from [18]. 
 

The direction and magnitude of ambient magnetic field at a 
given point is the vector sum of all magnetic fields present at that 
point. The dominate field in most cases is that of the Earth which 
varies from approximately 0.23 to 0.61 Gauss. However, additional 
magnetic fields caused by conductors through which a current is 
flowing and magnets also contribute to the total field at a given 
position. All contributing fields will be distorted by objects made of 
materials with a high magnetic permeability. 

In an indoor environment, sources of magnetic interference are 
constantly present and can include common items such as computer 
monitors, fluorescent lighting and powered-up electrical wiring inside 
walls. Table 1 lists the fields generated by some common appliances. 
In some cases the strength of the generated field exceeds that of the 
Earth within a short distance of the appliance. If a magnetic sensor is 
placed in this nearby area the generated field can be expected to have 
an effect on the direction and magnitude of the field measured by the 
sensor. Unless the field generated by the appliance happens to be 
aligned with that of the Earth, the reported direction will not be that of 
the Earth’s magnetic field. In a room size environment such fields 
would constitute local variations from the average field in the room. It 
is variations of this type and their effect on the orientation estimates 
produced by inertial magnetic sensors with which this paper is 
concerned. 

 
2.3  Magnetic Field Calibration 
 

Magnetic distortions caused by ferrous objects that have a fixed location and orientation relative to the magnetometers 
being used to determine the direction of the local magnetic field vector can be separated into two categories. These 
categories are hard iron and soft iron effects. Hard iron objects are permanently magnetized. Soft iron objects are un-
magnetized unless under the influence of a magnetic field.  

Hard iron effects add a constant offset to the vector measured by magnetometers making up an orthogonal triad. They 
can be compensated for in the horizontal plane by rotating the magnetometers together with the involved hard iron objects 
and sampling at enough points in a circle to determine the offset relative to the horizontal plane. Determination of all 
components of the offset requires rotation in more than one plane. Unlike hard iron effects, soft iron effects do not produce 
a constant offset. Soft iron influences are dependent on orientation [19].  Thus correcting for soft iron effects often requires 
the construction of a heading dependent lookup table [20]. Construction of a three dimensional lookup table is difficult and 
time consuming. Thus, in a strap-down navigation system, magnetic readings are usually projected onto the horizontal 
plane using a tilt sensor before corrections are made. 

In general, calibration is best approached by removing any soft iron materials and dealing with hard iron effects 
directly. The magnetic properties of many materials are actually in-between those of soft and hard iron and change over 
time. During a calibration performed at any given time, the effects of such sub-permanent materials will appear to be 
permanent like hard iron. However, since the effects observed are not truly permanent, calibration procedures must be 
repeated on a periodic basis [17]. 

It should be emphasized that the above discussion of calibration focuses only on effects caused by objects that have a 
fixed position and orientation relative to a magnetic sensor.  In a tracking application, moving inertial/magnetic sensor 
modules can be expected to constantly change position and orientation relative to ferrous objects and other sources of 
magnetic distortion. These magnetic distortions will not only change from position to position, but can also be expected to 
change over time as the configuration of the tracking area itself changes. The nature of these distortions and their possible 
effects on orientation estimation algorithms designed for inertial/magnetic sensor modules is the primary focus of this 
paper. 

 
3 An Experimental Investigation 

Inertial/magnetic sensor module filtering algorithms are dependent on sensing the local magnetic field to eliminate 
drift in the azimuth portion of orientation estimates. Given that variations in the direction and magnitude of the ambient 

  Distance Distance 
  (15cm) (30cm) 
  Field Field 
  (Gauss) (Gauss) 
Can Opener 1.60 0.27 
Electric Saw 1.20 0.25 
Vacuum Cleaner 0.75 0.20 
Electric Shaver 0.65 0.10 
Mixer 0.61 0.11 
Hair Dryer 0.50 0.07 
Electric Drill 0.20 0.03 
Portable Heater 0.15 0.04 
Fluorescent Light Fixture 0.13 0.04 
Fan (range Hood) 0.09 0.03 
Television 0.07 0.02 
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magnetic field can be expected to occur as a result of the presence of ferrous materials and electrical appliances operating 
in the tracking environment, what type of estimation errors can be expected and how large can the estimation errors be 
expected to be? Knowing the answer to this question provides insight into when inertial/magnetic sensor modules can be 
expected to work properly with minimal estimation error and what type of algorithm modifications could be expected to 
improve performance. The experiments described below attempt to answer this question. In the first series of experiments, 
several types of sensor modules are subjected to controlled changes in the direction and strength of the sensed magnetic 
field in order to characterize the resulting orientation estimation errors [21]. The second sets of experiments involve 
exposing a triad of magnetometers to magnetic fields generated by various electrical appliances and ferrous objects in order 
to examine the magnitude of the errors and the range at which they occur. In the last set of experiments, a robot arm is 
tracked using inertial/magnetic sensor modules and an optical tracking system. 

 
3.1 Errors Caused by Change in Magnetic Field Direction  

 
In the first series of experiments, magnetic field variations were applied to the three types of sensor modules to 

measure the deviation in their orientation estimates due to the change in the sensed magnetic field.  The change was 
generated using a Helmholtz coil. The sensors were placed inside the coil to observe how the orientation estimate would 
change as changes to the local direction of the local magnetic field were applied. The three different sensor modules tested 
were the MARG III, the MicroStrain 3DM-G, and the InterSense InertiaCube2. 

Initial calibration data for the Helmholtz coil was obtained by applying different currents to it and measuring the 
induced field with a Hall probe. This initial data allowed decisions to be made regarding how much current was necessary 
to produce the desired magnetic inductions to be applied to the three different inertial/magnetic sensors. The selected 
magnetic field level was chosen to be on the order of the Earth’s Main field. The voltage that was necessary to reach the 
required magnetic induction was calculated using linear least square fit. 

During the experiments, the Helmholtz coil was positioned to attempt to generate a magnetic induction that would be 
reversed approximately 180° in azimuth from the Earth’s magnetic field. In most cases, the actual measured change ranged 
between 160° and 180° due to imprecise alignment of the coil relative to the local magnetic field vector. Each sensor 
module was placed in eight different orientations with in the field generated by Helmholtz coil. For each of the orientations 
the coil was energized to observe the type and magnitude of change that occurred in the orientation estimate produced by 
the sensor and its associated filtering algorithm [21]. 

The data plots from these experiments show a period of measuring the Earth’s ambient magnetic field, followed by a 
period in which the Helmholtz coil was energized for 20 to 30 seconds. Following the energized period, the coil was de-
energized and the plots reflect the return to sensing only the ambient field of the laboratory. The change in the direction 
and magnitude of the magnetic field vector is depicted in figure 3. Energizing the coil caused the azimuth direction of the 
magnetic field vector to change from 0° to 180°. There was no significant change in the y (East) component of the vector. 
Since the coil was level, the z component of the magnetic field vector also remained unchanged. Prior to energizing of the 
coil, the magnetic field vector pointed North with a dip angle below the horizontal of 76°. While the coil was energized, the 
magnetic field vector pointed South with a negative elevation angle of 32°. Thus, in this series of experiments, not only 
were the sensor modules exposed to a full reversal of the azimuth direction of the magnetic field vector. Depending on 
their initial orientation relative to the magnetic field, the sensor modules were also exposed to a change in pitch, roll, or 
some combination of the two totally approximately 44°. 

For visualization purposes, all orientation estimates produced by the sensors are displayed in Euler angle form. In the 
experiments presented here, the sensor modules were oriented in a North-East-Down reference orientation with the x axis 
of the module pointing towards the local North, the y axis pointing East and the z axis pointing down. At no time was a 
sensor actually rotated before, during, or after the application of the altered magnetic field. 
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Figure 3: Depiction of total change in the direction and magnitude of the magnetic field vector  
(East is directly out of the page).  

 
Figure 4 and Figure 5 show the responses for the MARG III and MicroStrain 3DM-G respectively when the magnetic 

field was altered using the Helmholtz coil. In Figure 4, the MARG III was placed within the Hemholtz coil with an initial 
orientation of 2° roll, 10° yaw, and 3° pitch.  Calibration of the MARG III does not account for non-orthogonality within 
the magnetometer triad. Thus, small changes and hysteresis can be seen in the roll and pitch estimates and the yaw estimate 
changes by an amount that is slightly less than the change in azimuth that occurred in the direction of the magnetic field. 
The smooth response of the MARG III filtering algorithm is due to the particular gain values used in the experiment. In 
Figure 5, the MicroStrain 3DM-G had an initial orientation of 2° roll, 13° yaw, and 0° pitch. Energizing the coil caused a 
165° change in the yaw estimate produced by the sensor module. This change was equal in magnitude to the measured 
change in azimuth. No significant changes were observed in the roll and pitch estimates. The tuning of the orientation 
estimation algorithm provides an extremely sharp response to the change in the magnetic field direction. Both the MARG 
and MicroStrain sensors responded to the change in the sensed magnetic field by altering the yaw portion of their 
orientation estimates by an amount that was equal to measured azimuth change produced by the Helmholtz coil. Neither 
showed significant change in their roll and pitch estimates despite the fact that the direction of the magnetic field had 
changed both pitch angle and azimuth angle as depicted in Figure 3. This was true regardless of the orientation of the 
sensor modules relative to the coil. This is significant since it indicates the errors due to magnetic variation are restricted 
only to the horizontal plane. The estimates of pitch and roll are not affected by changes in the magnetic field direction for 
the sensors and algorithms tested [21]. This is in contrast to some orientation algorithms such as the QUEST [14], where 
such a change in the direction of the magnetic field will cause an error in both azimuth and pitch. 

 

 

Figure 4: MARG III sensor response to 180° azimuth change in the magnetic field direction. 
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Figure 5: MicroStrain 3DM-G response to 180° azimuth change in the magnetic field direction. 

 
Figure 6 shows the response of the InertiaCube2 to the same magnetic variations as used in the experiments depicted 

in Figure 4 and Figure 5. Like the other sensors the orientation estimate changes only in azimuth. However, examination of 
Figure 6 indicates that unlike the other sensors, the estimated orientation produced by the InertiaCube2 algorithm changed 
by approximately 90° instead of 180°.     

In order to investigate the response of the InertiaCube2 further, additional experiments were performed. In Figure 7, 
the sensor was again left in the same position within the Helmholtz coil. The coil was energized for approximately 30 
seconds.  Unlike previous experiments, during the time when the magnetic field was changing the sensor was physically 
tapped.  This caused the estimated azimuth to proceed through a change that is similar to that observed with the other two 
sensor modules. Euler angle azimuth is bounded between 180° and -180°. Though the change is expressed as -180°, it is 
equivalent to the positive 180° change seen with the other two sensor modules. The knee seen in the trailing edge of Figure 
7 is most likely the result of non-zero angular rate readings caused by tapping of the sensor module while the coil was 
being deenergized. These results indicate that the filtering algorithm of the InetiaCube2 will not accept changes in its 
orientation estimate without some accompanying non-zero reading  from the angular rate sensors.  

 
 

 

Figure 6: Undisturbed InertiaCube 2 response to 180° change in the magnetic field direction. 

 



in press: IEEE Robotics and Automation Magazine 

 8 

 

Figure 7: Disturbed InertiaCube 2 response to 180° change in the magnetic field direction. 

Based on the results of experiments described above, it appears that unlike active magnetic trackers which suffer 
estimation errors in all dimensions due to magnetic variations [22], variations in the direction of the local magnetic field 
only cause estimation errors in azimuth or the horizontal plan. The magnitude of the errors appears to be equal to the 
amount of deviation of the local magnetic field in the horizontal plane. No significant change was observed in the pitch and 
roll estimates produced by the three tested algorithms. These experimental results indicate that the dip angle itself or 
changes in the dip angle of the local magnetic field vector have no bearing on the accuracy or amount of variation seen in 
orientation estimates produced using inertial/magnetic sensor module data. 
 
3.2 Variations Caused by Common Objects 

 
To determine the magnitude of azimuth errors that can be expected in a typical indoor environment, two types of 

experiments were performed. Initial experiments measured the magnetic field variation experienced at varying distances 
from several test objects. Later experiments measured the change in direction of the magnetic field vector at several 
positions in a magnetically noisy laboratory. The MARG III filtering algorithm utilizes a normalized magnetic field vector 
of unit length and is thus not affected by changes in the length of the magnetic field vector [3]. Based on manufacturer’s 
literature, the algorithms associated with the InertiaCube and 3DM-G are similar in this regard. Therefore, the experimental 
results presented here concentrate on the changes in the direction of the local magnetic field and not changes in magnitude. 
The experiments described above establish that changes in the direction of the magnetic field orientation result only in 
azimuth errors for the orientation estimation algorithms associated with the tested sensor modules. Therefore, in the 
experiments described in this section, only magnetic deviation in the horizontal plane is examined.  

To measure the magnetic deviation in the horizontal plane caused by test objects, a “track” was constructed using 
non-ferrous materials and set so that the orientation of an inertial/magnetic sensor module could be held constant as the 
sensor was moved through successive positions approaching each object.  The sensor module was placed at 18 locations 
with each successive location being 10 cm closer to the test object. In the final position the sensor module was within one 
centimeter of the test object. This set-up allowed the direction of the magnetic field vector to be measured since the sensor 
module orientation was kept constant. The test objects included: 

 
• Computer monitor (CRT type), powered and un-powered states 
• Simple appliance (small space heater with fan), powered and un-powered states 
• Electrical power supply, powered and un-powered states 
• Metal filing cabinet 
• Mobile robot, un-powered, powered, and motor engaged. 
 
The MicroStrain 3DM-G sensor module is factory calibrated and allows access to scaled sensor output from each of 

the nine sensors in the module. The magnetometer triad in the 3DM-G sensor was used to measure the magnetic field 
direction in these experiments.   

Prior to examination of the deviations caused by the test objects, a baseline was established by measuring the change 
in magnetic field direction with no object present. In the baseline case, the direction of the magnetic field in the horizontal 
plane deviated less the 1.6° as the sensor module was moved a distance of 180 cm down the test track. This deviation is 
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attributed to noise in the ambient magnetic field of the laboratory. Comparison of these baseline deviations for each 
sampling position to the deviations that occurred when each of the test objects was present allows a more thorough 
understanding of the effects each object has on the magnetic field. The baseline was sampled before and after the 
experiments were conducted. This action helped to insure that no significant changes had occurred in the ambient magnetic 
field of the laboratory during the course of the experiments. 

Figure 8 contains two sub-plots of data from experiments in which a CRT computer monitor was the test object. In 
each sub-plot, baseline average deviations are displayed along with the average deviations that occurred when the monitor 
was present. The top sub-plot displays the average deviations that occurred when the monitor was un-powered. The bottom 
sub-plot displays the average deviations with the monitor turned on and connected to a PC. The error bars represent the 
standard deviation of the data obtained at each position. The magnetic field showed approximately the same amount of 
deflection whether the monitor was attached to a PC and powered up or turned off. The standard deviations in both 
experiments are small and can be attributed to measurement noise, indicating the deviation was a DC effect. Some impact 
from this appliance can be observed to almost 40 cm of separation distance. In both cases, the computer monitor causes a 
maximum average deflection of 10.5° in the magnetic field relative to the horizontal plane. 

Figure 9 shows two sub-plots of data from experiments in which a portable heater was used as a test object.  In the 
first experiment both the heater fan and heating elements were off. In the second experiment both the fan and the heating 
elements were on. Examination of the two sub-plots indicates that the average amount of magnetic field deviation is 
significantly greater when the heater is turned on and increases dramatically as the sensor is brought in close proximity to 
the appliance.  The standard deviations of the data taken at each position also increase significantly as the sensor is brought 
closer to the running heater. This fluctuation is most likely due to the use of alternating current to power the appliance. 
With the heater in a powered off state, the largest average deviation is 20.5°. With the heater turned on, the largest average 
deviation is nearly 90°. In both cases deviation caused by the heater did not begin to occur until the sensor module was 
within 30 cm of the heater. 
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Figure 8: Magnetic field vector deviation in the horizontal plane versus distance from a PC monitor in both un-
powered (top) and powered (bottom) states. 
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Figure 9: Magnetic field vector deviation versus distance from an appliance (space heater) in both un-powered (top) 
and powered (bottom) states. 

 
Figure 10 shows two sub-plots of data from experiments in which an electrical power supply was used as a test 

object.  In the first experiment the power supply is off. In the second experiment it is turned on and supplying power. The 
two sub-plots are very similar.  The standard deviations of the data taken at each position are relatively small again 
indicating the deviation is DC in nature. In both sub-plots, the maximum average deviation is between 60° and 70°. The 
deviation due to the presence of the power supply begins to occur at a distance of nearly one meter. 

Figure 11 presents the deviation in the sensed magnetic field vector as the magnetometer triad of the sensor module 
approached a large metal filing cabinet.  The deviations for this test object are the largest of any observed in the 
experiments described in this paper. Large standard deviations for the data samples for each of the positions are not 
observed indicating that the magnetic field deviation was constant in nature. The maximum deflection caused by the filing 
cabinet is 99.5° and begins at a distance of 1.5 meters. 
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Figure 10: Magnetic field vector deviation versus distance from an electrical power supply in both un-powered (top) 
and powered (bottom) states.  
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Figure 11: Magnetic field vector deviation versus distance from a metal filing cabinet. 

The final test object presented is a Nomad Scout mobile robot. Magnetic deviation due to the presence of the robot 
was examined with the robot in three different states. These three states correspond to the three sub-plots in Figure 12. The 
bottom sub-plot displays the deviation induced by the robot when it is in an un-powered state. In the middle sub-plot, all 
electronic systems of the mobile robot were energized with the exception of the motor used to move the robot. The data 
displayed in the top sub-plot were collected while all robot systems were powered and the motors were engaged. The robot 
was placed on a stand so that its wheels could rotate freely. The maximum amount of average deviation observed for the 
robot is about 9°. This includes the case in which the motors were engaged. The standard deviation of the data for each 
position is relatively small. No deviation is observed beyond a distance of 40 cm. 
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Figure 12: Magnetic field vector deviation versus distance from a mobile robot in a power-off (bottom), systems-on 
(middle) and motor-engaged (top) states. 

 
Another set of experiments was conducted to examine the amount of variation that can be expected to occur in a 

laboratory environment in which numerous sources of magnetic noise are present. In these experiments, the azimuth 
direction of the magnetic field was measured at 25 positions at 10 cm intervals along a straight line with the sensor module 
orientation being held constant. As the sensor module being used to collect measurement data was moved it came within 
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close proximity to numerous pieces of lab equipment simultaneously. The equipment included computer monitors, printers, 
mobile robots, servo control stations, and other miscellaneous lab equipment. Figure 13 contains sub-plots for two straight 
line samples. In the upper sub-plot, the azimuth direction of the magnetic field varies approximately 16°, with the 
maximum change between two adjacent positions being 13.1°. In the lower sub-plot, the azimuth direction of the magnetic 
field varies slightly less than 13°.  The average difference from position to position is less than three degrees for both trials. 
The accruing difference in the magnetic azimuth direction seen in the upper plot indicates the presence of a large scale 
magnetic disturbance in the lab. 

Overall, experiments in which the magnetic field variation caused by individual test objects was examined indicate 
that when inertial/magnetic sensor modules are separated by a distance of one meter or more from most common 
appliances and ferrous objects the amount of azimuth error induced by those objects will be negligible. The amount of 
variation caused by different types of objects can vary significantly. The experimental results demonstrate that while 
inclination estimates can be expected to remain valid in close proximity to objects causing distortions in the local magnetic 
field, in some cases the azimuth estimates produced by the implemented algorithms had very little relation to the true 
orientation of the sensor module and can vary by as much as 100°. In other tests, azimuth estimates varied less that 10°. 
Experiments in which sensor modules were exposed to multiple sources of distortion simultaneously in a crowded 
laboratory environment, show that azimuth estimates produced using a sensor module with a constant orientation can be 
significantly different for closely spaced positions. However, on average, differences in estimated azimuth from one 
position to another nearby position are much smaller.  
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Figure 13: Ambient magnetic field azimuth direction sampled at 10 cm intervals in a laboratory. 

3.3 Tracking a Robot Arm 
 

The final set of experiments described in this paper are designed to determine if inertial/magnetic sensor modules can be 
used to accurately track the orientation of the links of a robot arm made of ferrous materials. In these experiments a 
SCORBOT-ER III robot arm and three MicroStrain 3DM-G were utilized. The experiments described in section 3.1 
established that the response of the three different sensor modules to magnetic variations is essentially the same. In these 
tracking experiments, one 3DMG-GX1 was securely attached to each link of the arm. While robot encoders provide 
incremental joint angle readings, use of these angles to obtain orientation estimates relative to an earth fixed reference 
frame requires forward kinematics and calibration, and the accuracy of the orientation estimates cannot be ascertained for 
this robot arm. As a result the arm was also tracked using a Qualysis optical tracking system as depicted in Figure 14. The 
Qualysis system can be used to perform passive optical three degree-of-freedom position tracking and six degree-of-
freedom tracking of designated rigid bodies on which four passive markers are mounted. Manufacturer’s literature states 
that position accuracy is 0.1% of the field of view. The robot arm was contained in a one square meter tracking volume. 
The Qualysis system utilized seven proflex cameras positioned around the tracking volume. In the experiments discussed 
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here, a total of 17 passive markers were used to track the position of the outboard end of each link and the orientation of 
the inertial/magnetic sensor module attached to each link. Each link was defined as a rigid body by placing four markers on 
the surface of the attached inertial/magnetic sensor. The geometric center of these four markers served as the origin of the 
local coordinate system of each segment. Following calibration, maximum residual error for all cameras was less than 
1.127 mm. These calibration results indicate that the system was tracking to 1mm accuracy as would be expected given the 
size of the tracking volume. Update rate for the optical tracking system was 60 Hz. Given this accuracy, data produced by 
this system was treated as a reference in these experiments.  

 

 
 

Figure 14: SCORBOT-ER III robot arm instrumented for track ing with both inertial/magnetic sensor modules and 
an optical tracking system. 

 Figure 15 shows a comparison of the orientation estimates produced using an inertial/magnetic sensor module and an 
optical tracking system while simultaneously tracking the robot arm. During the experiment, the robot arm was 
programmed to repeatedly trace an inclined square pattern with its end effecter. Due to a limited number of degrees of 
freedom in the arm, the programmed pattern did not require any of the tracked arm segments to roll. In Figure 15, yaw and 
pitch are shown for the most outboard end inertial/magnetic sensor. Examination of the Figure 15 shows that both tracking 
technologies produced very similar motion plots. Maximum steady state difference between the orientation estimates 
produced using inertial/magnetic sensors and optical tracking is less than 2.5° in both sub-plots. This accuracy was 
achieved by the inertial/magnetic sensors despite the largely ferrous nature of the material o f which the robot arm was 
constructed and the presence and operation of several servo motors used to position and move the arm. 
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Figure 15: Comparison of yaw and pitch orientation estimates for a robot arm segment produced by an optical 
tracking system and an inertial/magnetic sensor module. 
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4 Conclusions and Discussion 

The direction of the local magnetic field vector can be altered by the presence of operating electrical appliances or 
objects made of ferrous materials. The assumption made by orientation estimation algorithms that the direction of the local 
magnetic field is static makes the algorithms susceptible to errors as the sensor modules are moved from one position to 
another within a tracking volume. In the algorithms tested, the errors appear only in the azimuth portions of the orientation 
estimates produced. These errors will be roughly equal in size to the amount the magnetic field deviates in the horizontal 
plane from the original reference.  

The amount of deviation caused by appliances and ferrous objects can range from very small to very large. The 
horizontal deviation of the magnetic field was measured for several common objects. Maximum deviation ranged from 
10.5 degrees to nearly 100 degrees. Experimental data presented here indicates that such deviations can be largely avoided 
by maintaining a distance of approximately one meter from the source of interference. Only one of the objects caused a 
horizontal plane deviation at a distance of more than one meter. For this object, horizontal plan deviations did not exceed 4 
degrees when at a distance of more that one meter. For many of the objects, no deviation was observed beyond a distance 
of a half meter.  However, in an indoor environment containing numerous sources of interference, it can be difficult to 
determine which objects are the major contributors to magnetic field deflections and the magnetic field can vary 
significantly between closely spaced positions.  

Despite all the above, the tracking experiments indicate that inertial/magnetic sensor modules can be used to track 
posture with an accuracy that is comparable to optical tracking. The accuracy of the orientation estimates while tracking a 
robot arm using data from inertial/magnetic sensor modules indicates that such modules can be used to accurately track 
orientation in environments and applications in which operating motors and ferrous objects are present. However, given the 
current state of the art of orientation estimation algorithms designed to process inertial/magnetic sensor module data, they 
should not be used in an application without first investigating the nature of the magnetic field in the environment in which 
they will utilized. While Rotenberg et al. have begun the investigation of modified algorithms designed to alleviate the 
effects of magnetic variations in [23], further work is needed. This work should include an investigation of the use of 
arrays of sensor modules placed at slightly different positions and a method of estimating the relative amount of 
interference to which each individual module is exposed. 

 
The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the 
National Institute for Occupational Safety and Health. 
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Design, Implementation, and Experimental Results
of a Quaternion-Based Kalman Filter for

Human Body Motion Tracking
Xiaoping Yun, Fellow, IEEE, and Eric R. Bachmann, Member, IEEE

Abstract—Real-time tracking of human body motion is an im-
portant technology in synthetic environments, robotics, and other
human–computer interaction applications. This paper presents
an extended Kalman filter designed for real-time estimation of
the orientation of human limb segments. The filter processes data
from small inertial/magnetic sensor modules containing triaxial
angular rate sensors, accelerometers, and magnetometers. The
filter represents rotation using quaternions rather than Euler
angles or axis/angle pairs. Preprocessing of the acceleration and
magnetometer measurements using the Quest algorithm produces
a computed quaternion input for the filter. This preprocessing
reduces the dimension of the state vector and makes the mea-
surement equations linear. Real-time implementation and testing
results of the quaternion-based Kalman filter are presented.
Experimental results validate the filter design, and show the
feasibility of using inertial/magnetic sensor modules for real-time
human body motion tracking.

Index Terms—Inertial sensors, Kalman filtering, magnetic sen-
sors, motion measurement, orientation tracking, pose estimation,
quaternions, virtual reality.

I. INTRODUCTION

MOTION tracking is a key technology in synthetic envi-
ronments, robotics, and other applications that require

real-time information about the motion of a human. A number
of motion-tracking technologies have been developed for human
motion capture in virtual reality and biomedical applications,
including mechanical trackers, active magnetic trackers, optical
tracking systems, acoustic, and inertial/magnetic tracking sys-
tems. Most are dependent on an artificially generated source and
are thus range-limited and susceptible to interference and noise.

Mechanical tracking systems can be placed in two separate
categories. Body-based systems use an exoskeleton that is at-
tached to the articulated structure to be tracked [1]. Goniometers
within the skeletal linkages measure joint angles. Ground-based
systems attach one end of a boom or shaft to a tracked object and
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typically have six degrees of freedom (DOFs) [2]. Ground-based
systems normally only track a single rigid body, but have the ad-
vantage of being able to provide haptic feedback.

Practical optical tracking systems can also be separated into
two basic categories. Pattern recognition systems sense an arti-
ficial pattern of lights and use this information to determine po-
sition and/or orientation [3]. Such systems may be “outside-in”
when the sensors are fixed and the emitters are mobile, or “in-
side-out” when sensors are mounted on mobile objects and the
emitters are fixed. Image-based systems determine position by
using multiple cameras to track predesignated points on moving
objects within a working volume. The tracked points may be
marked actively or passively [4], [5].

Active magnetic tracking systems determine both position
and orientation by using sets of small orthogonally mounted
coils to sense a set of sequentially generated magnetic fields.
The sequentially emitted fields induce current in each of the
sensor coils, allowing measurement of orientation. Changes in
total strength across the sensor coils are proportional to the dis-
tance from the field transmitter and can be used to measure po-
sition [6].

Ultrasonic tracking systems can determine position through
either time-of-flight and triangulation or phase-coherence.
Phase-coherence trackers determine distance by measuring the
difference in phase of a reference signal and an emitted signal
detected by sensors.

Body tracking using inertial and magnetic sensors is a rela-
tively new technology. Inertial/magnetic tracking is appealing
due to a lack of dependence on an artificially generated source.
It thus does not suffer from range limitations and interference
problems of sourced technologies. All delay or latency is due to
data processing and transmission. The availability of low-cost,
small-size micro-electro-mechanical systems (MEMS) sensors
has made it possible to build wrist-watch-sized, self-contained
inertial/magnetic sensor modules [7], [8]. These modules can
be used to accurately track orientation in real time. Attachment
of such sensor modules to each of the major limb segments of
a human makes it possible to independently determine the ori-
entation of each segment relative to an Earth-fixed reference
frame. The human model is constructed from multiple indepen-
dently oriented limb segments that are constrained by their at-
tachment to each other. Relative orientation between limb seg-
ments is not determined or needed.

A naive approach to inertial orientation tracking might in-
volve integration of angular rate data to determine orientation.
However, this solution would be prone to drift over time due to

1552-3098/$20.00 © 2006 IEEE
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the buildup of bias and drift errors. In order to avoid drift, in-
ertial tracking systems make use of additional complementary
sensors. Commonly, these sensors include triads of accelerome-
ters and magnetometers for respectively referencing the gravity
and magnetic field vectors. Measuring the gravity vector in the
sensor coordinate frame using accelerometers allows estimation
of orientation relative to the horizontal plane. However, in the
event that the sensor module is rotated about the vertical axis, the
projection of the gravity vector on each of the principal axes of
the accelerometer triad will not change. Since the accelerometer
triad can not be used to sense a rotation about the vertical axis,
magnetometers are used to measure the local magnetic field
vector in sensor coordinates and allows determination of ori-
entation relative to the vertical. The data from the incorporated
sensors is normally fused using a Kalman or complementary
filtering algorithm. It should be noted that data from low-cost
MEMS accelerometers cannot be double-integrated for an ex-
tended period of time to determine position, due to a quadratic
growth of errors.

This paper describes the design, implementation, and experi-
mental testing of an extended Kalman filter (EKF) for real-time
tracking of human body motion. In order to produce 3-D orien-
tation estimates relative to an Earth-fixed reference frame, the
filter uses input data from a sensor module containing a triad of
orthogonally mounted linear accelerometers, a triad of orthogo-
nally mounted angular rate sensors, and a triad of orthogonally
mounted magnetometers. Quaternions are used to represent ori-
entation to improve computational efficiency and avoid singu-
larities. In addition, the use of quaternions eliminates the need
for computing trigonometric functions. The filter continuously
corrects for drift based on the assumption that human limb ac-
celeration is bounded, and averages to zero over any extended
period of time. A first-order linear system is used to model
human body limb segment motion. The QUEST algorithm is
used to preprocess accelerometer and magnetometer measure-
ments, resulting in a significant simplification of the Kalman
filter design. The filter is experimentally validated using actual
sensor measurements.

The primary contributions of this paper are:
• analysis that determines that a simple motion model based

on a first-order linear system is sufficient for tracking
human limb segment orientation;

• an EKF designed for tracking human limb segment orien-
tation that fuses a precalculated quaternion input with an-
gular rate data;

• experimental results validating that filter performance is
adequate for human posture tracking applications.

The paper is organized as follows. Section II provides an
overview of related work, and contrasts that with the approach
described in this paper. Section III gives a brief description of
the MARG sensors used to obtain experimental data. Section IV
presents the process model of the Kalman filter for human body
motion tracking. Section V describes two approaches to Kalman
filter design. Section VI describes implementation issues of the
Kalman filter with a focus on how the nonlinear process model
was first linearized and then discretized. Experimental modeling
of the process noise covariance matrix and the measurement
noise covariance matrix is also detailed. Section VII reports the

MATLAB simulation and offline testing results of the Kalman
filter. Section VIII describes the real-time implementation of the
algorithm and testing results. The final section provides a sum-
mary and conclusions.

II. RELATED WORK

Many studies of human motion tracking using inertial sensors
have been performed. Depending on the type, number, and con-
figuration of sensors used, some studies are limited to tracking
two degrees of orientation in a plane, while others track 3-D
orientation. Algorithms have also been designed to track limb
segment orientations relative to each other or calculate joint an-
gles, as opposed to estimating the orientation of a limb segment
relative to an Earth-fixed reference frame.

A study of human motion tracking using accelerometers
alone was reported in [9]. During motions involving small
linear accelerations, a set of triaxial accelerometers was used
to determine joint angles. During motions accompanied by
higher accelerations, a technique is described that involves the
use of two sets of triaxial accelerometers on a single rigid body
to differentiate gravitational acceleration from motion-related
linear acceleration. Though the effects of these geometric
sensor fusion techniques are depicted, there is no comparison
with truth data. The use of magnetometers is mentioned, but
not discussed. Rehbinder and Hu [10] describe an attitude
estimation algorithm based on the use of angular rate sensors
and accelerometers. In this paper, drift in heading estimation
was unavoidable due to a lack of additional complementary
sensors, such as magnetometers. Thus, only two DOFs of
orientation are tracked. Sabatini et al. [11] used a single sensor
module containing a biaxial accelerometer and one gyroscope
to perform gait analysis and measurement. To measure incline,
distance, and speed, the method exploits the cyclical features
of human gait. Transition from one gait phase to the next is
determined using gyroscope data. Acceleration data is double
integrated during the swing phase to determine position and
used to determine the vertical when the foot is flat on the
ground. Since the accelerometers are unable to detect rotations
about the vertical plane, all motion is assumed to take place
in a nonrotating sagittal plane. Sabatini [12] took this research
further by creating a quaternion-based filtering algorithm.
A quaternion interpolation technique is used to improve the
accuracy of orientation and position estimates by reducing
the effects of sensor bias and scale factor drift in both the
accelerometers and gyroscope. Unlike the work described in
this paper, this gait analysis work does not attempt to measure
posture. In similar gait measurement work, Veltink et al. [13]
use a sensor module containing a three-axis accelerometer and
a three-axis angular rate sensor to measure gait characteristics
in order to tune an implantable drop-foot simulator.

In a study of dynamic registration in augmented reality ap-
plications that require more precise orientation tracking as well
as position tracking, Azuma and Bishop [14] use inertial data
from linear accelerometers and angular rate sensors to reduce
apparent lag in the position and orientation estimates produced
by an optoelectronic tracking system. The use of an EKF pre-
dictor resulted in errors 5–10 times lower than without predic-
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tion. In contrast, the work described in this paper produces only
estimates of orientation using inertial and magnetic data.

Full 3-DOF orientation tracking is most commonly per-
formed using nine-axis sensor modules containing three
orthogonally mounted triads of angular rate sensors, ac-
celerometers, and magnetometers. Foxlin et al. [15], [16]
describes two commercial nine-axis sensing systems designed
for head tracking applications. Sensor fusion is performed using
a complementary separate-bias Kalman filter. Drift correction
is described as only being performed during stationary periods
when it is assumed accelerometers are sensing only gravita-
tional acceleration. Thus, the described algorithm requires that
all motion stop in order to correct inertial drift errors.

Bachmann et al. [7], [17] proposed a nonoptimal quaternion-
based complementary filter for human body tracking. The filter
is able to track through all orientations without singularities, and
continuously correct for drift without a need for stationary pe-
riods using nine-axis inertial/magnetic sensor module data. Ex-
tensions to this work and the development of an optimal filter de-
signed for human posture tracking applications are described in
[18]–[20]. Use of a first-order linear system for modeling human
body limb motions was first proposed in [18]. A Gauss–Newton
iteration method is used to preprocess accelerometer and mag-
netometer data to produce quaternion input to the EKF. Formu-
lation and simulation testing of a reduced-order implementation
of the Gauss–Newton iteration method for this Kalman filter is
documented in [19]. Preliminary experimental testing results are
presented in [20].

In [21], Gallagher et al. present a nonoptimal complemen-
tary filter algorithm that has a lower computational complexity
and similar accuracy to the work described by Bachmann et
al. in [7] and [17]. Luinge describes a Kalman filter designed
for human body tracking application in [22]–[24]. In the pro-
posed method, inclination is determined without low-pass fil-
tering accelerometer data. The design is based on assumptions
concerning the frequency content of the acceleration and the
magnitude of gravity. Reduction of drift about the vertical axis
is dependent on the use of a kinematic human body model. Mag-
netometers are not used. More recently, Roetenberg et al. [25]
extended the Kalman filter described in [23] to include a mag-
netometer model designed to prevent heading drift and com-
pensate for magnetic disturbances. This compensation allowed
a significant estimation accuracy improvement in comparison
with no compensation or using angular rate sensors only. In
[26], Zhu and Zhou describe a linear Kalman filter algorithm
designed to smooth accelerometer and magnetometer readings
from a nine-axis sensor module. Rather than estimating indi-
vidual limb segment orientations relative to a fixed reference
frame, as is done in this paper, their system determines joint
angles in axis/angle form using the data from the two sensors
mounted on the inboard and outboard sides of the joint. The axis/
angle pairs are determined analytically using processed mea-
surement data.

Kraft [27] describes an “unscented,” quaternion-based
Kalman filter for real-time estimation of rigid-body orientation
using nine-axis sensor modules. The described filter approx-
imates the Gaussian probability distribution using a set of
sample points instead of linearizing nonlinear process model

equations. Simulation results demonstrate the general validity
of the described filter. Tests of the filter with real measure-
ments are mentioned, but not shown or quantified. Haid and
Breitenbach [28] also describe a Kalman filter algorithm for
use with inertial and magnetic sensors. The primary aim of
the filter is the elimination of drift and bias effects observed
in low-cost angular rate sensors. The filter works only in the
single dimension of the targeted angular-rate sensor. It does not
estimate limb segment orientation or joint angles.

Some work has attempted to eliminate the need to include an-
gular rate sensors in inertial/magnetic sensor modules. In [29],
Gebre-Egziabher et al. describe an attitude determination al-
gorithm for aircraft applications. The algorithm is based on a
quaternion formulation of Wahba’s problem [30], where magne-
tometer and accelerometer measurements are used to determine
attitude without the use of angular rate sensors. A Kalman filter
implementation of the algorithm is also presented. The algo-
rithm is based on the assumption that the rigid body to which the
sensor is attached is stationary or is slow moving, and is thus not
applicable to highly dynamic tracking applications. Chin-Woo
et al. [31] propose a gyroscope free inertial navigation system
that uses accelerometers to determine both linear and angular
motions of a rigid body. The approach requires a minimum of
six accelerometers. Acceptable configurations and basic algo-
rithms are examined through simulation. Use of accelerome-
ters to calculate angular rate results in a faster orientation error
growth rate than that associated with conventional angular rate
sensors. This result is due to inclusion of the angular accelera-
tion terms which introduce integrated noise and drift. The idea
of using accelerometers to measure angular rate is carried fur-
ther by Ang et al. in [32] and [33].

In contrast with the work described above, this paper presents
a filter algorithm that is specifically designed for tracking
human-limb segment orientation relative to an Earth-fixed
frame. The algorithm incorporates a human body motion
model. It adopts a two-layer filter architecture, in which the
QUEST algorithm preprocesses accelerometer and magne-
tometer data and an EKF fuses the QUEST output with angular
rate data.

III. MARG SENSORS

Experimental data were collected using MARG III iner-
tial/magnetic sensor modules designed by the authors and
fabricated by McKinney Technology [8]. The MARG sensor
design is based on its primary application, that is, human body
motion tracking. Primary sensing components for this unit
include Tokin CG-L43 ceramic rate gyros, Analog Devices
ADXL202E micromachined accelerometers, and Honeywell
HMC1051Z and HMC1052 one- and two-axis magnetometers.
The sensor module also incorporates a Texas Instruments
MSP430F149 ultra-low-power, 16-bit RISC architecture mi-
crocontroller. Overall, dimensions of the MARG III unit are
approximately 1.8 cm 3.0 cm 2.5 cm.

The manufacturer specified maximum allowable angular rate
of the CG-L43 ceramic gyro is 90 /s. This is deemed suffi-
cient to quicken response in human body motion tracking appli-
cations, but not accurately measure rates associated with highly
dynamic motion. Three of these gyros are orthogonally mounted
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Fig. 1. Kalman filter process model. q is the orientation quaternion, ! is the angular velocity, w is a white noise, and � is the time constant.

within the MARG unit to form a triad capable of measuring
3-DOF angular rate. In the results presented here, the limita-
tions of the angular rate sensors did not affect the performance
or demonstration of the algorithms during typical human mo-
tion.

The maximum measurement range of Analog Devices
ADXL202E is 2 g, which is acceptable for sensing gravita-
tional acceleration. The ADXL202E is a two-axis acceleration
sensor on a single chip. As a result, only two of them are re-
quired to form a triad for measuring 3-DOF acceleration. The
ADXL202E also offers a duty cycle output, which can be directly
interfaced to a low-cost microcontroller without analog/digital
(A/D) converters. The accelerometers are not used to measure
linear accelerations associated with human motion.

In the MARG design, a one-axis HMC1051Z for the z-axis
and a two-axis HMC1052 for x-y axes are mounted on the same
PCB to form a three-axis magnetometer. The HMC1051Z and
HMC1052 are specially designed to be mounted on the same
PCB to form an orthogonal triad.

The purpose of the microcontroller is to convert analog sensor
outputs to digital data, digitally filter the angular rate sensor
data, and perform automatic set/reset of magnetometers to avoid
magnetic saturation problems. To prepare angular rate data for
processing by the Kalman filter, the data is averaged on start
up to establish initial bias values. During run-time, angular rate
data is preprocessed using a simple first-order high-pass filter
to eliminate drift over time. Static bench tests have established
that accelerometer and magnetometer data are relatively stable
over time, and they are thus not bias-corrected at run-time. Mag-
netic interference is a major concern when using magnetome-
ters in environments containing changing or distorted magnetic
fields [34]. This is an active area of research by the authors and
others [25]. No compensation for external magnetic effects is
performed in the work described in this paper. It is noted that the
MARG sensor is a prototype constructed using 2 g accelerom-
eters and 90 /s angular rate sensors. These components were
chosen for typical human motion, and may not be sufficient for
extreme human motion. The algorithm presented in the paper is
not limited to these particular sensor parameters.

IV. KALMAN FILTER PROCESS MODEL

As stated above, the objective of this paper is to design a
Kalman filter for real-time tracking of human body motion. To
do so, it is necessary to establish a process model representing
motion dynamics of the human musculoskeletal system. Dy-
namic models of the human musculoskeletal systems are com-
plex, and have been studied for many years. Such models are
ideal for computer simulations of articulated body motions, but
remain too computationally demanding for real-time applica-
tions such as real-time human motion tracking. Thus, the chal-
lenge is to develop a model that is simple yet adequate for mo-
tion tracking applications. Based on extensive trial and error

study, a first-order linear system model is adopted to represent
the motion of each human body limb segment. Such a model is
depicted in the left half of Fig. 1. It is assumed that each limb
segment is independent of the others. The input to the linear
system is a white noise , and the output is the angular velocity

of the limb segment. The most important parameter in this
model is the time constant , which determines how fast a limb
segment (e.g., upper arm) can move in typical human motion
conditions. The angular velocity is thus modeled as a colored
noise generated by a linear system with a white noise input.

In the filter, quaternions are used to represent the orientation
of each body limb segment for two reasons. First, the quaternion
representation does not suffer from the singularity problem as-
sociated with the Euler angle representation. Second, it avoids
trigonometric functions in the filter algorithm, making it more
efficient and easier to implement in real time on microcon-
trollers. In what follows, will be used to denote the orientation
quaternion in Earth coordinates. The angular velocity and the
quaternion derivative are related by the following well-known
identity [35]:

(1)

where represents quaternion multiplication. Equation (1) is
represented by the center block in Fig. 1. The quaternion deriva-
tive is integrated to produce the quaternion . In order to take
advantage of computational simplifications and efficiencies as-
sociated with unit quaternions, the resultant quaternion is nor-
malized to unit length in the last step of the process model, as
shown in Fig. 1. The quaternion produced by the integrator
may not be exactly unit length, but it is normally very close to a
unit quaternion. To avoid the complexity that the normalization
introduces into the Kalman filter derivation, it is not included in
the process model equations presented in the next section. As a
result, although the Kalman filter is an optimal algorithm, this
normalization procedure leads to a suboptimal algorithm. In the
next section, two Kalman filter designs based on this process
model will be presented.

V. KALMAN FILTER DESIGN

Two alternative approaches to the Kalman filter design based
on the process model presented in Section IV will be described
in this section. The state vector for both approaches is the same.
It is a 7-D vector consisting of the three components of angular
rate and the four elements of the orientation quaternion. The
difference between the two approaches is in the measurement
or output equation for the Kalman filter. The first approach uses
a standard Kalman filter design, which has a 9-D measurement
vector, consisting of 3-D angular rate, 3-D acceleration, and 3-D
local magnetic field. This 9-D vector directly corresponds to
the measurements provided by inertial/magnetic sensors mod-
ules. The first three components of the output equation (angular
rate portion) are linearly related to the state vector. However, the
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other six components of the output equation are nonlinearly re-
lated to the state vector. The nonlinear relationship is quite com-
plicated. As a result, the EKF designed with this output equation
is computationally inefficient.

The second approach uses a separate algorithm to find a
corresponding quaternion for each set of accelerometer and
magnetometer measurements. The computed quaternion is then
combined with the angular rate measurements, and presented to
the Kalman filter as its measurements. By doing so, the output
equations for the Kalman filter become linear, and the overall
Kalman filter design is greatly simplified.

A. The First Approach

The first approach is a standard Kalman filter design based on
the process model depicted in Fig. 1. The state vector is 7-D,
with the first three components being the angular rate , and the
last four components being the quaternion . That is

Based on Fig. 1, the state equations are given by

(2)

(3)

It is noted that quaternion normalization is not modeled in these
state equations, but is carried out in the real-time implementa-
tion.

Since measurement data to the filter are provided by MARG
sensors, it is natural to choose the following as the measure-
ments of the Kalman filter:

component of angular rate
component of angular rate
component of angular rate

component of acceleration
component of acceleration
component of acceleration

component of local magnetic field
component of local magnetic field
component of local magnetic field

Since angular rates are part of the state, the first three measure-
ment equations are simply given by the following:

(4)

(5)

(6)

where is the measurement noise that is assumed to be white.
As for the remaining six measurement equations, they turn out to

Fig. 2. Block diagram of the first approach to Kalman filter design.

Fig. 3. Block diagram of the second approach to Kalman filter design.

be quite complicated. As an example, the seventh measurement
equation is given by

(7)

where , and are values of the Earth magnetic field
measured in the Earth coordinates, which are constant for a
given location. It is not difficult to design an EKF, as shown
in Fig. 2, based on state (2) and (3), and the nine measurement
equations, which was indeed carried out in [36]. The problem is
that computational requirements for implementing such a filter
are extremely high, making it unfeasible for real-time motion
tracking. An alternative approach to the Kalman filter design is
thus presented in the next subsection.

B. The Second Approach

Fig. 3 shows a block diagram of an alternative approach to
filter design. Acceleration and local magnetic field measure-
ments are used as input to the QUEST algorithm [37] to produce
what will be called the computed quaternion. The computed
quaternion together with angular rate measurements is then pre-
sented to a Kalman filter as measurements. It will be seen below
that the Kalman filter in this case is significantly simpler, owing
to the fact that the measurement equations are linear. It is true
that there is an additional computational cost to implement the
QUEST algorithm in this approach. Still, the overall computa-
tional requirements for this approach are much less than what is
needed for the first approach.

The QUEST (quaternion estimator) algorithm is a popular al-
gorithm for a single-frame estimation of an attitude quaternion
[37]. The algorithm was created to solve Wahba’s problem [30]
that involved determination of the attitude of a rigid body in ref-
erence to a fixed coordinate system based on a set of measure-
ment or observation vectors using a closed form solution. The
minimum number of measurement vectors required to compute
orientation is two. Early solutions to Wahba’s problem directly
compute a rotation matrix capable of rotating the measurement
(assuming no errors) vectors to match the reference vectors. The
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QUEST algorithm solves Wahba’s problem by calculating the
four elements of the corresponding optimal quaternion [37].

This alternative approach to filter design as shown in Fig. 3
is not without reasons. If the limb segment to which an iner-
tial/magnetic sensor module is attached is stationary, accelera-
tion (gravity) and local magnetic field measurements are suffi-
cient to determine the orientation of the body. While stationary,
accelerometers measure the local gravity vector in the body
frame. The 3-D gravity measurements can be used to determine
roll and pitch angles of the body relative to the fixed Earth frame.
The yaw angle of the body is determined from the local mag-
netic field measurements. In this application, the QUEST al-
gorithm takes gravity and magnetic field measurement vectors
with equal weight and computes the optimal quaternion that will
rotate these vectors to match their corresponding reference vec-
tors.

While the rigid body is in motion, the computed quaternions
from this algorithm do not represent the actual real-time ori-
entation of the body, because accelerometers measure the sum
of gravity and motion induced acceleration. This is where an-
gular rate measurements come to help estimate the orientation
of the rigid body. While angular rate measurements can be in-
tegrated to yield an orientation estimate, they are prone to drift
over an extended period of time. Acceleration and magnetic field
measurements do not drift over time. The Kalman filter in this
approach is designed to optimally fuse the complementary in-
formation provided by the angular rate measurements and the
computed quaternion.

It should be pointed out that this filtering architecture has
been previously proposed and successfully applied in other
areas such as attitude heading and reference systems (AHRS)
[38]. In [38], an inertial navigation system for autonomous
underwater vehicles was developed, in which a complementary
filter first combines measurement data from accelerometers,
angular rate sensors, and magnetic sensors. An EKF then fuses
the output of the complementary filter with the GPS/DGPS
measurements.

The state equations in the second approach are the same as
those in the first approach, that is, equations (2) and (3). The
measurement equations in this case are much simpler, and they
are

(8)

where is the white noise measurement. Although the mea-
surement equations are linear, an EKF is still required since the
second part of the state (3) is nonlinear. Nevertheless, linearity
in the measurement equations significantly simplifies the filter
design and reduces computational requirements for real-time
implementation.

C. Discussion

The first-order process model and an early version of the
second approach to the Kalman filter design was first reported in
[18]. Rather than using the QUEST algorithm, a Gauss–Newton
iteration method was used to preprocess accelerometer and
magnetometer data to produce quaternion input to the EKF. A

reduced-order implementation of the Gauss–Newton iteration
method was described in [19]. This reduced order implemen-
tation requires computing the inverse of a 3 3 matrix rather
than that of a 4 4 matrix. The Gauss–Newton iteration method
was replaced by the factored quaternion algorithm in [20].
While more efficient, the factored quaternion algorithm pro-
vides a suboptimal solution. The QUEST algorithm provides
an optimal solution for noisy measurement data. Preliminary
experimental results were also reported in [20]. In this paper,
the QUEST algorithm is adopted to preprocess the acceleration
and magnetic field measurement data. The QUEST algorithm
requires computing the inverse of a 4 4 matrix, but it is a
single-frame or noniterative algorithm. The QUEST algorithm
needs to be executed once for each sampling step of the Kalman
filter. The Gauss–Newton method needs to be iteratively evalu-
ated several times until it converges for each sampling step of
the Kalman filter.

VI. KALMAN FILTER IMPLEMENTATION

In this section, the implementation of the second approach
Kalman filter design will be described. First, the state equations
are linearized and discretized to yield a discrete process model.
Second, modeling of the process noises and measurement noises
is presented.

The state equations (2) and (3) can be written together in the
following form:

(9)

This nonlinear process model can be linearized along the cur-
rently estimated trajectory

(10)

The actual trajectory is the sum of the estimated trajectory
and the small increment

(11)

The next step is to convert the continuous-time model (10) into a
discrete-time model. Let be the sampling interval. Then
the difference equation corresponding to the differential (10) is
given by

(12)

where the discrete state transition matrix is

(13)
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Fig. 4. Block diagram of the EKF.

and is a vector of discrete white process noise and its ele-
ments are given by

(14)

The measurement (8) are linear and thus linearization is not
required. The corresponding discrete measurement equation is
given by

(15)

where is the 7 7 identity matrix. An EKF can now be de-
signed for the discrete process (12) and the discrete measure-
ment (15). A complete diagram of the filter is depicted in Fig. 4.
It is seen from Fig. 4 that the model parameters , and

need to be provided to start the filter. is the discrete state
transition matrix given by (13). is the identity measurement
equation matrix of (15). The determination of the covariance
matrix of the process noises and the covariance matrix
of the measurement noises is discussed below.

The process noise covariance matrix is defined by

(16)

where is the expectation operator, and is the discrete
process white noise vector of (12), whose components are given
by (14). Before computing , it should be noted that the con-
tinuous process noises of the
state (2) are independent white noises with zero mean and vari-
ance . As such, the covariance is given by

(17)

Fig. 5. Comparison of the simulated angular rate (left) and actual angular rate
measurements (right).

Using (17) and (14), the process noise covariance matrix of
(16) is evaluated to be

(18)

where , and are given by

(19)

(20)

(21)

What remains to be determined are the variance of the con-
tinuous white noise processes and the time constant of the
process model. They are determined using actual measurement
data from the MARG sensors and a Matlab simulation imple-
menting the angular rate process model (2). The variance and
time constant in the simulation are adjusted until the output of
the simulation closely matches the actual measurement data. For
this purpose, a MARG sensor was attached to the right lower
arm of a user and typical arm motion data were collected. It was
experimentally determined that 0.5 s, 0.4 rad /s .

Fig. 5 shows a comparison between the simulated angular
rates and the actual angular rates obtained from a MARG III
sensor for typical arm motions. The graphs to the left represent
the angular rates generated by the simulation model. The graphs
to the right are the angular rates measured by a MARG sensor.
It can be observed that the two sets of data exhibit similar char-
acteristics. Autocorrelations of the simulated and actual x-axis
angular rate data are plotted in Fig. 6. The autocorrelation of the
actual angular rate data obtained from the MARG sensor was
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Fig. 6. Autocorrelations of the simulated x-axis angular rate (top plot) and the
actual x-axis angular rate (bottom plot).

first computed. The parameters of the process model were then
adjusted so that the autocorrelation of the simulated angular rate
closely matches that of the actual data. It is seen that they are
not exactly the same, but closely resemble each other.

The measurement noise covariance matrix represents the
level of confidence placed in the accuracy of the measurements,
and is given by

(22)

In principle, is not necessarily diagonal. For practical pur-
poses, only diagonal elements are experimentally determined
based on actual measurements. A MARG sensor was placed in
various static configurations, and data were collected. The vari-
ances of the first three measurement components are determined
directly from angular rate measurements, and the variances of
the other four components (quaternion components) are deter-
mined using computed quaternions. The experimentally deter-
mined values are rad /s , and

.

VII. OFFLINE MATLAB TESTING RESULTS

After deriving all the required parameters to initialize the
Kalman filter, it was implemented using MATLAB to test the
performance and accuracy of the quaternion orientation esti-
mates. Real world data recorded using a MARG sensor was used
in these tests.

Since the Kalman gain was determined such that the sum of
squared errors is minimized, one way to measure the conver-
gence of the Kalman filter is through examination of the trace
of the error covariance matrix . Fig. 7 shows the trace of
for the first 200 samples of data obtained with the sensor in its
reference position (x-axis pointing north, y-axis pointing east,
and z-axis point down). It is noted that the sum of squared er-
rors reaches a steady state after approximately 0.6 s.

Table I shows the elements of the quaternion for the first five
samples. The initial estimate was chosen to be the unit quater-

Fig. 7. Trace of the error covariance matrix.

TABLE I
CONVERGENCE OF THE QUATERNION ESTIMATES

nion (0.5, 0.5, 0.5, 0.5). The actual position of the sensor in the
reference position is represented by the quaternion (1, 0, 0, 0).
The data shown in Table I indicates that the Kalman filter esti-
mate converged to the actual position in a single iteration.

While the QUEST algorithm works well for static orientation
and slow movements, the objective of the Kalman filter is to
blend angular rate measurements with the estimates produced
using magnetometer and accelerometer data during periods in
which the sensor module is subjected to motions involving high
angular rates and large linear accelerations. To verify the esti-
mation accuracy during such periods, the orientation estimates
of the Kalman filter were compared with the estimates produced
using only the QUEST algorithm with no rate measurement and
with the reference motion of a precision tilt table. Two kinds
of experiments were conducted for this test. The first used con-
trolled rotations produced by a HAAS precision tilt table. The
table has two DOFs and is capable of positioning to an accuracy
of 0.001 at rates ranging from 0.001 to 80 /s. In order to mit-
igate any possible magnetic effects generated by the steel con-
struction of the tilt table, the sensor package was mounted on
a nonferrous extension above the table as shown in Fig. 8. The
extension is made of a piece of PVC pipe and is approximately
1 m in length. The second experiment used a random motion
pattern produced while the sensor was attached to the arm of a
person.

In the first set of experiments, the sensor was initially placed
with its xyz axes aligned with north-east-down directions. The
sensor was rotated about the x-axis at a rate of /s and
then rotated at the same rate (in the reverse direction) for
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Fig. 8. Experimental setup using a HAAS precision tilt table.

Fig. 9. Orientation estimate produced by the QUEST algorithm (left) and the
Kalman filter (right) with a 90� rotation in roll axis.

two cycles. Fig. 9 shows the performance of the Kalman filter
in estimating the orientation of the sensor. The graphs to the
left show the orientation estimated by the QUEST algorithm,
and the graphs to the right show the orientation estimated by
the Kalman filter. It can be seen that the QUEST algorithm was
able to correctly estimate the roll angle before the first (negative)
rotation, between the first and second (positive) rotations, and
after the second rotation, but it is not able to correctly estimate
orientation during the rotational motions. During the rotational
motions, the accelerometers measure the sum of gravity and mo-
tion induced acceleration. Without rate sensors, the QUEST al-
gorithm is not able to differentiate gravity from the motion ac-
celeration. Relatively large errors in pitch and yaw were also
produced by the QUEST algorithm. On the other hand, it can
be seen from the top-right plot that the Kalman filter was able
to correctly estimate the roll angle throughout the duration of
the experiment. The small pitch and yaw motions seen in the
center-right and bottom-right plots are due to misalignment of

Fig. 10. Zoom-in view of the roll estimate (solid curve) from the Kalman filter
and the tilt table reference motion (dashed curve) with a 90� rotation in roll.

Fig. 11. Difference between the roll estimate and the tilt table reference motion.

the sensor module with the motion axes of the experimental tilt
table. The misalignments were corrected manually, but could
not be completely removed without the use of equipment not
available to the authors. To confirm that the errors were due
to misalignments, the algorithm was tested using synthetically
generated, noise-free data with rotation in only one axis. These
results demonstrated that the algorithm does not produce any
observable cross-coupling responses in other axes.

To illustrate the accuracy of the Kalman filter, the estimates
produced by the Kalman filter can be compared with the mo-
tion of the tilt table. Since the tilt table used in the experiments
is much more accurate than the tracking system under evalua-
tion, its motion can be treated as a truth reference. In Fig. 10,
the top-right plot of Fig. 9 is replotted in a zoom-in view for the
time period of 7–15 s. The solid curve represents the roll esti-
mate from the Kalman filter, and the dashed curve is the refer-
ence trajectory of the tilt table. The difference between these two
curves is shown in Fig. 11. It is observed from Figs. 10 and 11
that the static accuracy of the filter is better than 2 for the time
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Fig. 12. Orientation estimate produced by the QUEST algorithm (left) and the
Kalman filter (right) with a 45� rotation in pitch axis.

Fig. 13. Orientation estimate produced by the QUEST algorithm (left) and the
Kalman filter (right) with random arm movements.

periods of about 7–9.8 s and 11.3–15 s. During the time period
of 9.8–11.3 s, the tilt table and the MARG sensor are in the dy-
namic state moving from 90.0 to 0.0 at the rate of 60 /s. It
can be observed from Fig. 11 that the maximum error is about 9 .
This large dynamic error is mainly due to the lag of the tracking
system. The lag is on the order of 100 ms, as depicted by the
horizontal gap between the blue curve and green curve during
the time period of 10–11 s. The sampling rate is 100 Hz, which
yields a lag of 10 ms. The computational time required to ex-
ecute the filter algorithm is about 1.6 ms. The additional lag is
caused by data transmission. In human body tracking applica-
tions, this lag-induced error is only observable during highly
dynamic motion, and is not of great enough magnitude to im-
pair user interaction with a virtual environment.

Fig. 12 shows plots of rotating the sensor about the y-axis first
by and then by at a rate of /s. Similar results are
observed in this experiment.

Fig. 13 shows the results of an experiment in which the sensor
was rotated randomly while attached to the arm of a person. Al-

Fig. 14. Snapshot of real-time testing. The user with two MARG sensors at-
tached to the right arm is the foreground and the human avatar projected on a
screen is in background.

Fig. 15. Another snapshot of real-time testing.

though there is no true reference in this case, it can be seen that
the Kalman filter eliminated the jittering and spiking contained
in the orientation estimates produced by using the QUEST al-
gorithm alone.

VIII. REAL-TIME TESTING RESULTS

After initial testing of the EKF with the MATLAB implemen-
tation, the QUEST algorithm and EKF algorithm were imple-
mented in Java for real-time testing and evaluation. Computa-
tion time required to perform a single update is 1.6 ms. Memory
management in the Java implementation is carefully performed
to avoid the requirement for garbage collection and possible
interruption of filter processing. The real-time quaternion pro-
duced by the Kalman filter was visualized using a human-like
avatar as seen in Figs. 14 and 15. Two MARG sensors were used
to track the motion of a human arm, one sensor being attached to
the upper arm and the other attached to the lower arm. A video
clip demonstrating real-tracking of human arm motions is avail-
able at http://ieeexplore.ieee.org.
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The QUEST algorithm was able to track the motion of the
human arm under slow-moving conditions where linear accel-
eration was not significant. However, when the arm motion be-
came faster, the algorithm was not able to follow the arm motion,
resulting in observable lag as well as overshoots.

When the EKF was integrated with the QUEST algorithm, the
avatar was able to successfully track the human arm motion in
real time under all conditions. Furthermore, the filtering process
did not produce any noticeable lag. Movement of the human arm
and the avatar was synchronized.

IX. CONCLUSION

This paper presents the design, implementation, and experi-
mental results of a quaternion-based Kalman filter for real-time
human body motion tracking using inertial/magnetic sensor
modules containing orthogonally mounted triads of accelerom-
eters, angular rate sensors, and magnetometers. This subject
filter is not applicable to applications in which accelerations
due to forces other than gravity are present for indefinite pe-
riods. The filter was designed with the goal of being able to
produce highly accurate orientation estimates in real time. This
real-time requirement precluded the use of complex models
of human motion. Instead the filter design makes use of a
simple first-order linear system model. Output of the model
is angular velocity modeled as colored noise generated from
white noise input. The Kalman filter design is further simplified
by preprocessing accelerometer and magnetometer data using
the single-frame QUEST algorithm. The quaternion produced
by QUEST is provided as input to the Kalman filter along with
angular rate data. In comparison to more traditional approaches,
this preprocessing step significantly reduces the complexity
of filter design by allowing the use of linear measurement
equations. Prior to testing of the filter algorithm, values for
variances and time constants where determined by comparing
simulation results to actual measurement data obtained during
typical arm motions. This process was considered complete
when the autocorrelation of the simulation data closely matched
that of the actual data. In experiments designed to validate filter
performance, this approach was shown to work well. In these
experiments, filter orientation estimates were compared with
truth data obtained from a rotary tilt table. Filter response very
closely matched tilt table motion with a static accuracy better
than 2 and a dynamic accuracy of better than 9 . This larger
error during motion was largely caused by data communication
delays. Even with this delay, qualitative experiments in which
the algorithm was used demonstrate that these dynamic errors
were not of great enough magnitude to impair user interaction
with a virtual environment.

The Kalman filter design presented in this paper is the result
of several years of effort. With refinement of this design and
others mentioned in the related work section, orientation esti-
mation algorithms have reached a limit given the accuracy and
noise characteristics of the MEMs sensors employed in the ap-
plication. The angular rate sensors and accelerometers are truly
“sourceless” and do not depend on any outside reference. How-
ever, though it is not artificially generated, the magnetometers
must sense a homogenous ambient magnetic field in order for
these systems to deliver orientation estimates that are stable in

azimuth. Thus the ultimate accuracy of these algorithms can not
be determined by considering only the sensors and the imple-
mented algorithms.
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Abstract—Orientation of a rigid body can be determined
from measured gravity and local magnetic field vectors. In hu-
man body tracking applications, where it is assumed linear ac-
celeration will average to zero over any extended period, triads
of accelerometers and magnetometers can be used to measure
gravity and local magnetic field vectors in sensor coordinates.
Pitch and roll can be determined using only acceleromter data.
Due to deviations of the direction of magnetic field vector
between locations, it is desirable to use magnetic data only
in calculations related to the azimuth. The TRIAD algorithm
can be used to algebraically solve this problem. Alternatively,
some formulation of the QUEST algorithm can be used to find
an optimal solution based on a given set of measurements.
This paper presents an intuitive geometric 3-DOF orientation
estimation algorithm with physical meaing, called the factored
quaternion algorithm. Through a derivation based on half-angle
formulas, the algorithm sequentially calculates three angles and
produces a quaternion output to represent orientation. The
use of magnetic data is restricted to determination of rota-
tion about the vertical. Thus, magnetic variations cause only
azimuth errors. A singularity avoidance method is introduced
that allows the algorithm to track through all orientations.
Experimental results demonstrate that the proposed algorithm
has an overall accuracy that is essentially identical to that of
the TRIAD and QUEST algorithms, and has a computational
efficiency that is comparable to the TRIAD and better than
the QUEST.

Index Terms— Motion measurement; inertial sensors; mag-
netic sensors; accelerometers, orientation estimation; QUEST
algorithm; quaternions; factored quaternion algorithm.

I. Introduction

ACCURATE real-time tracking of the orientation or
attitude of rigid bodies has applications in robotics,

aerospace, underwater vehicles, synthetic reality, and oth-
ers. For synthetic reality applications, the human body
can be viewed as an articulated rigid-body consisting of
approximately fifteen links. If the orientation relative to
a fixed reference frame can be determined for each of the
links, then the overall posture of the human subject can
be accurately rendered and communicated in real-time.
The orientation of an individual limb segment can be
measured through the attachment of an inertial/magnetic
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sensor module. Such sensor modules typically contain
a triad of orthogonally mounted accelerometers and a
triad of orthogonally mounted magnetometers. Under the
assumption that human limb acceleration is bounded and
averages to zero over any extended period of time, the
accelerometers are used to measure the gravity vector
relative to the coordinate frame of the sensor module.
The magnetometers serve a similar function for the local
magnetic field vector. In dynamic applications, a triad of
angular rate sensors can be added as a high frequency
source of orientation information. The availability, low-
cost, and small-size Micro-Electro-Mechanical Systems
(MEMS) sensors has made it possible to build wrist watch
sized, self-contained inertial/magnetic sensor modules [4],
[15]. These modules can be used to accurately track
orientation in real-time. This technique of orientation
estimation is dependent only on passive measurement of
physical quantities that are directly related to the rate of
rotation and orientation of a rigid body. Since no generated
signals are involved, there are no restrictions on the range
of operation. All latency in such a system is due to the
computational demands of the data processing algorithms.

In body tracking applications based on the use of
small inertial/magnetic sensors [4], the gravity and local
magnetic field vectors are often measured and compared
to reference vectors in order to determine orientation. In
the case of the gravity vector, the assumption that it
is fixed leads to no difficulties since this vector points
straight down in any inertial frame located on or near
the surface of the earth. Making the same assumption
regarding the local magnetic field vector can lead to
problems. In a typical room setting the direction of the
local magnetic field vector can be expected to vary due to
the presence of ferrous objects or electrical appliances. In
inertial/magnetic tracking algorithms, the local magnetic
field vector is commonly treated as a fixed reference. It
is assumed that this reference will remain constant. If it
does not, algorithms may be prone to errors not only in
azimuth, but also in pitch and roll as well.

The TRIAD algorithm [11] is a single frame determin-
istic method for calculating the attitude of a rigid body
relative to a Earth fixed reference frame. The algorithm
requires normalized measurements of two nonparallel ref-
erence vectors as input. Since the problem is overspecified,
the TRIAD algorithm works by throwing away some
components of these measurement vectors. It is used to
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agebraically solve for the 3 × 3 orthogonal orientation
matrix A, such that

bv = A Ev (1)

where Ev and bv are representations of a vector v in
Earth and body coordinates respectively. The algorithm
constructs two triads of orthonomal unit vectors. The two
triads are the components of an inertial frame expressed in
both the body and Earth fixed reference frames. Let ba and
bm be accelerometer and magnetometer measurements
relative to the body frame of the the gravity and magnetic
field reference vectors, Eg and Em. The reference vectors
are expressed relative to an Earth fixed frame. The first
triad is given by

ŝ1 =E g (2)

ŝ2 =
(Eg ×E m)
|Eg ×E m|

(3)

ŝ3 =
(Eg × (Eg ×E m))

|Eg ×E m|
(4)

The second triad is given by

r̂1 =b a (5)

r̂2 =
(ba×b m)
|bm×b m|

(6)

r̂3 =
(ba× (ba×b m))

|ba×b m|
(7)

The triads are then used to create measurement and
reference matrices such that

Mmea = [r̂1 r̂2 r̂3] Mref = [ŝ1 ŝ2 ŝ3] (8)

The orientation matrix, A, representing the attitude of a
rigid body is then simply

A = MmeaM
T
ref (9)

It should be noted that if the measurements of the gravity
and the magnetic field are ordered as described above the
cross-products used to caculate ŝ2 and r̂2 eliminate any
contribution of the magnetic measurements relative to the
vertical. Thus, pitch and roll components of orientation
are determined using only acceleromter measurements.

The QUEST (QUaternion ESTimator) algorithm is
an optimal algorithm for single-frame estimation of a
quaternion that represents the attitude of a rigid body
relative to a fixed coordinate system. The algorithm was
created to solve Wahba’s problem [10] in the context
of spacecraft attitude determination. Given a set of 3-
dimensional known reference unit vectors V1, V2, . . ., Vn,
and a set of the corresponding observation or measurement
unit vectorsW1, W2, . . ., Wn (which could be the direction
of the sun or a star observed from a spacecraft measured
in the spacecraft’s body frame), Wahba’s problem is to
find the least squares estimate of spacecraft attitude by
minimizing the following loss function

L(A) =
1
2

n∑

i=1

ai(Wi −AVi)T (Wi −AVi) (10)

with respect to the 3 × 3 orthogonal orientation ma-
trix A, where a1, a2,. . ., an are nonnegative weighting
coefficients. The minimum number of measurement and
reference vector pairs is two. Early solutions to Wahba’s
problem directly computed the orientation matrix A [12].
Davenport [13] introduced a method of parameterizing the
orietation matrix by a unit quaternion q, and proved that
the loss function (10) can be transformed into a quadratic
gain function of the unit quaternion in the form of

G(A(q)) =
n∑

i=1

ai − L(A(q)) = qTKq (11)

where K is a 4 × 4 matrix constructed from the refer-
ence vectors Vi, measurement vectors Wi, and weighting
coefficients ai, i = 1, 2, . . ., n. Based on Davenport’s
work, Shuster and Oh derived the QUEST algorithm
[11], and showed that the optimal quaternion q that
maximizes the gain function (11) while satisfying the unit
quaternion (unit norm) constraint is the eigenvector of the
K matrix corresponding to the largest eigenvalue of K.
Thus, the problem is reduced to finding the eigenvalues
and eigenvectors of a 4 × 4 matrix.

Extensive research has been conducted to investigate
the use of inertial/magnetic sensor modules for posture
estimation in human body tracking applications. Foxlin
et al. describes two commercial systems based on the
use of sensor modules containing accelerometers, magne-
tometers, and angular rate sensors [1], [2]. The described
algorithm is designed for head tracking applications and
requires still periods to correct for inertial drift. Bachman
et al. proposed a quaternion-based complementary filter
for human body motion tracking [3], [4]. The filter is able
to track through all orientations without singularities and
continuously correct for drift without a need for stationary
periods using data from inertial/magnetic sensor module
containing nine sensors. Gallagher et al. presents a simpler
complementary filter algorithm with lower computational
complexity in [5]. Luinge describes a Kalman filter de-
signed for human body tracking applications. The filter
is based on the use of only accelerometers and rate
sensors. Drift about the vertical axis is reduced by limiting
body segment orientation using a kinematic human body
model [6]. Rather than estimating individual limb segment
orientations relative to an Earth fixed reference frame,
Zhu and Zhou determine joint angles in axis/angle form
using the data from the two nine-axis sensors mounted on
the inboard and outboard sides of the joint [7]. Yan and
Yuan describe an orientation tracking algorithm that uses
low cost sensor modules to take two axis measurements
of gravity and the local magnetic field [8]. In a manner
similar to the method described in this paper, elevation,
roll and azimuth angles are sequentially calculated. The
angles are used to construct rotation matrices and the
use of trigonometric functions is required. The method is
limited to orientation tracking within a hemisphere. In [9],
Gebre-Egziabher et al. describe an attitude determination
algorithm for aircraft applications. The algorithm is based
on a quaternion formulation of Wahba’s problem [10],
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where magnetometer and accelerometer measurements are
used to determine attitude.

This paper presents an alternative algorithm for es-
timating orientation based on a set of measurements
from triads of orthogonally mounted magnetometers and
accelerometers. It is called the factored quaternion algo-
rithm (FQA). It is a intuitive alternative to the TRIAD
and QUEST slgorithms. Local magnetic field data is
used only in azimuth angle calculations. This decoupling
of accelerometer and magnetometer data eliminates the
influence of magnetic variations on calculations that de-
termine pitch and roll. Through a derivation based on
half-angle formulas, the computational cost of computing
trigonometric functions is avoided. The algorithm pro-
duces a quaternion output. It is able to track through
all orientations without singularities. Experimental results
in which the factored quaternion algorithm is compared
with the TRIAD and QUEST algorithms indicate that it
has nearly identical accuracy at a comparable or lower
computational expense.

The primary contributions of this work are:
• Derivation of a new geometrically intuitive algorithm

for determining orientation relative to an Earth fixed
reference frame based on a set of accelerometer and
magnetometer measurements.

• A singularity avoidance method that allows the algo-
rithm to track through all orientations.

• Experimental results which validate the performance
of the algorithm and compare it to more established
methods.

The rest of this paper is organized as follows. Section
II presents a derivation of the factored quaternion al-
gorithm. Section III describes experiments in which the
factored algorithm is compared to the QUEST algorithm
for efficiency and accuracy. The ability of the algorithm
to track through all orientations without singularities is
demonstrated as is it’s decoupling property. The final
section discusses the experimental results and provides
a summary.

II. Factored Quaternion Algorithm

The factored quaternion algorithm presented in this
section is for estimating the orientation of a rigid body
based on Earth gravity and magnetic field measurements
[14]. Sensor modules such as the MARG III described
in [15] contain a triad of accelerometers and a triad of
magnetometers, and can be used to provide measurement
data for the factored quaternion algorithm.

In a typical application, a sensor module is employed as
a strap down inertial measurement unit (IMU) attached
to a rigid body whose orientation is to be determined.
To facilitate the analysis, it is convenient to define three
coordinate systems. An Earth-fixed coordinate system
xeyeze is defined to follow the North-East-Down (NED)
convention, that is, xe points to north, ye points to east,
and ze points down. A body coordinate system xbybzb

is attached to the rigid body whose orientation is to

be measured. The sensor module has its own coordinate
system xsyszs corresponding to the axes of three orthog-
onally mounted accelerometers/magnetometers. Since the
sensor module is rigidly attached to the rigid body, the
body coordinate system xbybzb differs from the sensor
coordinate system xsyszs by a constant offset. For the
convenience of discussions, in what follows, the body
coordinate system is assumed to coincide with the sensor
coordinate system.

A. Quaternion Rotation Operator

Unit quaternions can be used to perform rotation oper-
ations in the 3-D space [16]. In this paper, the following
notation will be used to represent a quaternion q:

q = (q0 q1 q2 q3) (12)

where q0 is the scalar (or real) part and [q1 q2 q3]T is
the vector part. Let

u =



u1

u2

u3


 (13)

be a unit vector in the 3-D space. The following unit
quaternion

q = cos
β

2
(1 0 0 0) + sin

β

2
(0 u1 u2 u3) (14)

is commonly utilized to perform rotation operations.
Specifically, for any vector v = [v1 v2 v3]T in the 3-
dimensional space, the following operation

v′ = q vq−1 (15)

produces a vector v′ by rotating the vector v about the axis
defined by u by an angle θ. In the above, all multiplications
are quaternion multiplications, and v and v′ are treated
as a pure quaternion whose real part is zero. q−1 is the
inverse quaternion of q [16].

B. Elevation Quaternion

A rigid body is said to be in its reference orientation
when its xbybzb-axes are aligned with those of the Earth
coordinate system. It is known that a rigid body can be
placed in an arbitrary orientation by first rotating it about
its z-axis by an angle ψ (azimuth or yaw rotation), then
about its y-axis by angle θ (elevation or pitch rotation),
and finally about its x-axis by angle φ (bank or roll
rotation).

In order to derive a quaternion describing only elevation,
it is useful to note that when a rigid body is moving at
a constant velocity and is in a fixed orientation, then an
accelerometer measures only gravity. Furthermore, the x-
axis accelerometer senses only the component of gravity
along the x-axis, and this component in turn depends only
on elevation angle. This can be seen from the following
argument. Starting with the rigid body in its reference
orientation, the x-axis accelerometer is perpendicular to
gravity and thus registers zero acceleration. The y-axis
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accelerometer also reads zero while the z-accelerometer
reads -g. If it is then rotated in azimuth about its z-axis,
the x-axis accelerometer still reads zero, regardless of the
azimuth angle. If the rigid body is next pitched up through
an angle θ, the x-axis accelerometer will read:

ax = g sin θ (16)

and the z-axis accelerometer will read:

az = −g cos θ (17)

where g = 9.81m/s2 is the gravitational acceleration, and

a =



ax

ay

az


 (18)

is the acceleration vector in the body coordinate system.
For convenience, the accelerometer and magnetometer
output from a sensor module is normalized to a unit vec-
tor. Let ā denote the normalized vector of the acceleration
measurements:

ā =
a

|a|
=



āx

āy

āz


 (19)

where |a| is the norm of the acceleration vector a. It follows
from equation (16) that the value for sin θ can be expressed
as:

sin θ = āx. (20)

The value for cos θ can be computed from

cos θ =
√

1 − sin2 θ. (21)

It should be noted that a positive value for cos θ is assumed
in the above equation. This is because the elevation angle
θ is by convention restricted to the range of −π/2 ≤ θ ≤
π/2. It is noted that if the rigid body is rolled about its
x-axis, equation (17) will change, but equation (16) will
remain the same. This means that equation (16) holds for
any orientation of the rigid body.

In order to obtain an elevation quaternion using equa-
tion (14), a value is needed for sin(θ/2) and cos(θ/2).
From trigonometric half-angle formulas, half-angle values
are given by

sin
θ

2
= sign(sin θ)

√
(1 − cos θ)/2 (22)

cos
θ

2
=

√
(1 + cos θ)/2 (23)

where sign() is the sign function that returns +1 for
positive arguments and -1 for negative arguments. The
sign function is not needed in equation (23) since cos(θ/2)
is always positive within the elevation angle range.

Elevation is a rotation about y-axis. The unit quaternion
representing elevation motion can now be computed using
equation (14) and values for the half angle trigonometric
functions as follows:

qe = cos
θ

2
(1 0 0 0) + sin

θ

2
(0 0 1 0). (24)

C. Roll Quaternion
The acceleration measured by the z-axis accelerometer

with roll angle φ = 0 is given by equation (17). Changing
azimuth does not alter this measurement, but changing
roll does. A more general formula for y-axis accelerometer
reading is:

ay = −g cos θ sinφ. (25)

Likewise, the z-axis accelerometer will read:

az = −g cos θ cosφ. (26)

In terms of the normalized acceleration measurement, the
two equations above can be written as:

āy = − cos θ sinφ (27)
āz = − cos θ cosφ (28)

where the value for cos θ was determined in equation (21).
If cos θ is not equal to zero, the values of sinφ and cosφ
can be easily determined by:

sinφ = −āy/ cos θ (29)
cosφ = −āz/ cos θ. (30)

If cos θ is equal to zero, it means that x-axis of the body
coordinates is vertically oriented. In such cases, the roll
angle is undefined and it can be assumed to have a value
equal to zero. The range of the roll angle φ is by convention
restricted to −π ≤ φ ≤ π. The half angle values for φ can
be computed in a manner similar to equations (22) and
(23) with one exception. When cosφ = −1 and sinφ = 0,
the use of equations (22) and (23) will result in a value
of zero for both sin(φ/2) and cos(φ/2). This case can be
treated in implementation by assigning a value of one
to the sign function when its argument is zero. Having
obtained the half angle values for the roll angle φ, the roll
quaternion is computed as follows:

qr = cos
φ

2
(1 0 0 0) + sin

φ

2
(0 1 0 0). (31)

D. Azimuth Quaternion
Since azimuth rotation has no effect on the estimation

of roll or elevation quaternions from accelerometer data,
the strategy to be employed in this paper for azimuth
quaternion estimation is to first solve for the elevation
and roll quaternions. These can then be used to rotate
the normalized magnetic field measurement vector in the
body coordinate system

bm =




bmx
bmy
bmz


 (32)

into the Earth coordinate system by the quaternion
rotation operation:

em = qe qr
bm q−1

r q−1
e . (33)

In the above, bm stands for the pure quaternion of the
3-dimensional vector itself, i.e., bm = (0 bmx

bmy
bmz).

The same convention is used for em. In the absence of
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measurement error, em should agree with the known local
normalized magnetic field vector n = [nx ny nz]T ,
except for the effects of azimuth rotation on the sensor
magnetometer readings. In such a case, nz = emz and

[
nx

ny

]
=

[
cosψ − sinψ
sinψ cosψ

][
emx
emy

]
(34)

where ψ is the azimuth angle. Before proceeding further,
it should be noted that equation (34) implies that the
two 2-dimensional vectors differ only in orientation. In
fact, experimental data show that, in the presence of
measurement noise, they may also differ in length. To
compensate for this effect, the vectors on both sides of
equation (34) can be normalized. Specifically, let the
normalized local magnetic field reference vector in the
horizontal plane be:

N =
[
Nx

Ny

]
=

1√
n2

x + n2
y

[
nx

ny

]
(35)

and the corresponding quantity measured by the magne-
tometer be:

M =
[
Mx

My

]
=

1√
em2

x + em2
y

[
emx
emy

]
. (36)

With these definitions, equation (34) becomes:
[
Nx

Ny

]
=

[
cosψ − sinψ
sinψ cosψ

] [
Mx

My

]
(37)

from which the value of cosψ and sinψ can be solved as:
[

cosψ
sinψ

]
=

[
Mx My

−My Mx

][
Nx

Ny

]
. (38)

The azimuth angle ψ is restricted to the range −π < ψ ≤
π. The half angle formulas given by equations (22) and
(23) can again be used to compute the half angle values
of ψ. The azimuth quaternion is then given by:

qa = cos
ψ

2
(1 0 0 0) + sin

ψ

2
(0 0 0 1). (39)

Having obtained all three rotation quaternions, the
quaternion estimate representing the orientation of the
rigid body is finally given by:

q̂ = qa qe qr. (40)

E. Singularity Avoidance in Implementation
The factored quaternion algorithm presented above

takes the normalized acceleration measurement vector and
local magnetic field measurement vector as its input, and
produces a quaternion as its output. It is a single-frame
algorithm, that is, it takes measurements at a single
instant of time, and produces an output. It does not
require a history of measurements at multiple instants
of time.

From the two measurement vectors, the half angle
value of each rotation angle is first computed. Then the
corresponding quaternion for each rotation is computed.
Finally, the overall orientation quaternion is computed by
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Fig. 1. Roll, pitch, yaw angles, singularity condition, and switch
flag during a 180◦ rotation in pitch axis with ideal simulated data.

equation (40). It should be emphasized that the algorithm
does not evaluate trigonometic functions at any step.

Although quaternions when used to represent the 3-
dimensional orientation do not have singularities, the
factored quaternion algorithm described above uses three
angles to derive the quaternion estimate. It is known that
any three-parameter representation of the 3-D orientation
is inevitably singular at some point [17]. Without excep-
tion, the factored quaternion algorithm has a singularity,
so does the QUEST algorithm. The QUEST algorithm
uses the Gibbs vector

ρ =
1
q0



q1
q2
q3


 (41)

in its derivation and is at a singular point if q0 = 0.
A method similar to the method of sequential rotations
discussed in [18] is described below to avoid singularities
in the numerical implementation. A singularity occurs in
the factored quaternion algorithm if the elevation angle
is ±90◦. This happens when cos θ = 0 or equivalently
āz = 0 in equations (29) and (30). In implementation,
the first step of the algorithm is to check the value of āz.
If the absolute value of āz is smaller than a predefined
constant ε (e.g., ε = 0.1), the procedures described below
are implemented to circumvent the numeric difficulty of
having a small number in the denominator.

If āz ≤ ε, the elevation angle is close to ±90◦. The nor-
malized acceleration measurement vector ā and magnetic
field measurement vector bm in the body frame will be
rotated about the body coordinate yb-axis by an angle
α to obtain the following offset (rotated) measurement
vectors:

āoffset = qα ā q
−1
α (42)

bmoffset = qα
bm q−1

α (43)
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where qoffset is the offset (rotation) quaternion given by

qα = cos
α

2
(1 0 0 0) + sin

α

2
(0 0 1 0). (44)

Under the condition of āz ≤ ε, the offset measurement
vectors will be used in place of the original measurement
vectors to carry out the factored quaternion algorithm.
The resultant orientation quaternion estimate from equa-
tion (40) in this case is called q̂alt.

The value of α can be chosen arbitrarily as long as it is
sufficiently away from zero. It is chosen to be 20◦ in this
discussion. Rotating measurement vectors about yb-axis by
20◦ is equivalent to rotating the (original) body coordinate
system xbybzb to a temporarily offset body coordinate
system x′

by
′
bz

′
b about yb-axis by -20◦. q̂alt represents the

orientation of x′
by

′
bz

′
b in the Earth coordinate system. The

quaternion estimate q̂ representing the orientation of the
original body coordinate system xbybzb is given by the
following compound quaternion (i.e., rotating x′

by
′
bz

′
b back

to xbybzb about y′
b-axis by 20◦):

q̂ = q̂alt qα. (45)

To demonstrate how the singularity avoidance method
described above works, ideal measurements as well as
noisy measurements for a 180◦ rotation in pitch axis were
synthetically generated. Figure 1 shows the results with
ideal measurements. The top three plots are trajectories
of roll, pitch, and yaw angles. The bottom two plots depict
the value of cos θ and the switch flag. The value of cos θ is
an indication of the singularity condition, and the switch
flag indicates when the singularity avoidance method is
invoked. As expected, the pitch angle increases from 0 to
90◦ while the roll and yaw angles remain at zero during
the first half period. As the pitch angle approaches 90◦,
the value of cos θ drops nearly to zero. When cos θ is
less than ε (whose value is chosen as 0.1 in this testing),
the singularity avoidance method is activated during the
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Fig. 2. Roll, pitch, yaw angles, singularity condition, and switch flag
during a 180◦ rotation in pitch axis with noisy simulated data. The
parameters used are: ε = 0.1 and the offset angle α = 20 degrees.
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Fig. 3. Components of the estimated quaternion during a 180◦

rotation in pitch axis with noisy simulated data.

period of sample numbers from about 820 to 980 as seen
in Figure 1. During this period, the value of cos θ is lifted
upwards to be away from zero. The value of the offset
angle α is chosen to be 20◦.

Owing to the conventional choice, the pitch angle is
limited from -90◦ to 90◦. As a result, the orietation of
a 95◦ pitch, 0◦ roll, and 0◦ yaw is depicted as 85◦ pitch,
180◦ roll, and 180◦ yaw in Figure 1. This is the reason why
the pitch angle increases from 0 to 90◦ and then decreases
from 90◦ to 0 while the actual rotation increases from 0
to 180◦.

Figure 2 shows the results with noisy measurements
for the same rotational motion as in Figure 1. Noises
were introduced using a random number generator. It
is noted that the switch flag flipped many times, and
the value of cos θ was kept above ε = 0.1 at all times.
The trajectory of the pitch angle follows the same rise
and fall pattern as in Figure 1 except with added noise.
The roll and yaw angles flipped from 0 to 180◦ numerous
times, signifying that the pitch angle jumped above and
below 90◦. Figure 1 and Figure 2 plot the trajectory of
the roll, pitch, and yaw angles for visualization purposes.
Although there are jumps in roll and yaw, there are no
jumps in the trajectory of the estimated quaternion as seen
from the corresponding plot of the estimated quaternion
components shown in Figure 3.

III. Experimental Results
The experimental results described in this section com-

pare the factored quaternion and QUEST algorithms.
They also exhibit the unique properties of the factored
quaternion algorithm. The first set of experiments con-
stitutes a side-by-side comparison of the two algorithms
for static and dynamic accuracy. In these experiments,
an inertial/magnetic sensor module was subjected to
a series of known rotations at several different rates.
Both the factored quaternion and QUEST algorithms
were tested first using raw accelerometer data and then
low-pass filtered data. The second set of experiments
demonstrate the effectiveness of the singularity avoid
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method presented in the previous section. The third
set of experimental results demonstrates the decoupling
property of the factored quaternion algorithm. In these
experiments a stationary inertial/magnetic sensor module
was subjected to a magnetic field exhibiting a varying
direction and magnitude by moving a ferrous object in the
vicinity of the sensor module. Finally a rough comparison
of the computational efficiency of the QUEST and factored
quaternion algorithms is made.

Sensor data for the experiments was collected using a
MARG III inertial/magnetic sensor module which was
designed by the authors and fabricated by McKinney
Technology [15]. Primary sensing components for this unit
include a pair of two axis Analog Devices ADXL202E mi-
cromachined accelerometers, and Honeywell HMC1051Z
and HMC1052 one and two-axis magnetometers. Overall,
dimensions of the MARG III unit are approximately 0.7”×
1.2”×1.0”. Though the MARG III units contain angular
rate sensors, no rate data was used in the experiments
described in this paper.

A. Testing of Static and Dynamic Accuracy

Controlled rotations of the sensor modules were per-
formed by placing an inertial/magnetic sensor module
on a HAAS precision tilt table. The table has two
degrees of freedom and is capable of positioning with
an accuracy of 0.001 degrees at rates ranging from 0.001
to 80 degrees/second. In order to mitigate any possible
magnetic effects generated by the steel construction of the
tilt table, the sensor unit was mounted on a non-ferrous
extension above the table. In each of these experiments,
the sensor module was initially placed with its xsyszs axes
respectively aligned with the North-East-Down directions.
Following an initial still period, the senor module was then
subjected to a series of rotations.
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Fig. 4. Orientation estimate produced by the QUEST and factored
quaternion algorithms with a 90◦ rotation in roll axis using raw
accelerometer data.
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Fig. 6. Orientation estimate produced by the QUEST and factored
quaternion algorithms with a 90◦ rotation in roll axis using low-pass
filtered accelerometer data.

Figure 4 shows the performance of the each of the two
algorithms using raw accelerometer and magnetometer
data. The sensor was rotated -90◦ about the x-axis at
a rate of 60◦/s and then rotated 90◦ at the same rate (in
the reverse direction) for two cycles. The plots to the left
show the orientation estimated by the QUEST algorithm,
and the graphs to the right show the orientation estimated
by the factored quaternion algorithm. The small pitch and
yaw motions seen in the pitch and yaw sub-plots are due to
misalignment of the sensor module with the motion axes
of the tilt table. It can be seen that both algorithms were
able to correctly estimate the roll angle before the first
(negative) rotation, between the first and second (positive)
rotations, and after the second rotation. Neither was able
to correctly estimate orientation during rotational motion.
Similar results where observed in experiments involving
different angles of rotation at different rates.

During motion the accelerometers measure the sum of
gravity and motion induced acceleration. In the case of the
experiments described here, the motion induced accelera-
tion is due to the motion of the tilt table and flexing of
the non-ferrous extension on which the sensor module was
mounted. Since both the QUEST and factored quaternion
algorithms are single-frame algorithms, neither is able to
filter out transient non-gravitational accelerations that
occur during motion.

Figure 5 depicts a revised approach in which a low-
pass filter for accelerometer data is combined with the
factored quaternion or QUEST algorithm. To examine the
performance of the QUEST and factored quaternion algo-
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Fig. 7. Angles, singularity condition, and switch flag of the factored
quaternion algorithm during 110◦ rotation in pitch axis.
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Fig. 8. Components of the estimated quaternion produced by the
factored quaternion algorithm during 110◦ rotation in pitch axis.

rithms in conjunction with a low-pass filter, the rotation
experiments were repeated. Figure 6 shows performance
during 90◦ rolls at a rate of 60◦/s. A comparison of Figure
6 to Figure 4 in which the sensor module was subjected
to the same rotations shows that either algorithm can be
used to track the orientation of a rigid-body in a dynamic
environment when acceleration data is low-pass filtered.
Again, similar results where observed in experiments
involving different angles of rotation at different rates.

B. Avoidance of Singularity Conditions
Within the factored quaternion algorithm, three half

angles are used to derive an orientation quaternion.
Measurement vectors are rotated by an angle α when
the pitch angle approaches ±90◦ and the cos θ approaches
zero. Figures 7 and 8 respectively depict the operation of
the factored quaternion algorithm and its output during
110◦ pitch rotations. During this experiment, α was set to
45◦ and ε was 0.2. The bottom two subplots of Figure 7
trace the value the cos θ and the value of the switch flag
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Fig. 9. Components of the normalized local magnetic field measure-
ment vector under the influence of a moving magnetic field distortion.

0 500 1000
-20
-10

0
10
20

Estimate from QUEST algorithm

Ro
ll(

De
gre

es
)

0 500 1000
-20
-10

0
10
20

Pit
ch

(D
eg

ree
s)

0 500 1000-200

-100

0

100

200

Ya
w

(D
eg

ree
s)

Sample number

0 500 1000
-20
-10

0
10
20

Estimate from factored quaternion

Ro
ll(

De
gre

es
)

0 500 1000
-20
-10

0
10
20

Pit
ch

(D
eg

ree
s)

0 500 1000-200

-100

0

100

200

Ya
w

(D
eg

ree
s)

Sample number

Fig. 10. Orientation estimate produced by the QUEST and
factored quaternion algorithms with a static sensor module under
the influence of a moving magnetic field distortion.

that triggers the singularity avoidance method and show
the direct correspondence between the two in time. It can
be observed that each time cos θ was about to become
less than ε, the switch flag was set to one. The top three
subplots in Figure 7 depict the angles calculated from
the quaternion estimate produced by the algorithm. The
apparent rise of the pitch angle to 90◦ and then drop to 70◦

is a visualization artifact due to the use of the three angles
for plotting purposes. 110◦ pitch is represented as 70◦ pitch
together with a 180◦ roll and a ±180◦ yaw. At times the
yaw angle flips between two alternate representations of
the same rotation, namely -180◦ and 180◦. The roll angle
is stable at either 0◦ or 180◦.

The quaternion elements depicted in Figure 8 are
smooth and exhibit no flipping of orientation represen-
tations or singularity artifacts. The real part of the
quaternion, q0, begins at 1.0 and changes to cos 110◦

2 =
0.5736 during the 110◦ rotations. The element of the unit
quaternion associated with rotations about the pitch axis,
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q2, begins at zero and changes to sin 110◦

2 = 0.8192 during
the 110◦ rotations. The small changes in q1 and q3 are
due to misalignment between the sensor module and the
motion axes of the tilt table.

C. Testing of Static Accuracy When Subjected to Mag-
netic Field Variations

To test the decoupling property of the factored quater-
nion algorithm, an inertial/magnetic sensor module was
mounted on a level non-ferrous stationary platform. The
sensor module xsyszs-axes were respectively aligned with
the North-East-Down directions. Following an initializa-
tion period, the sensor module was exposed to a ferrous
object. Movement of the ferrous object caused the di-
rection of the measured magnetic field to change by as
much as 360◦. Changes in the measured magnetic field
were observed in all measurement axes as illustrated by
Figure 9. Figure 10 shows orientations calculated using
the QUEST and factored quaternion algorithms. It can
be observed that the orientations calculated using the
QUEST algorithm (depicted by three subplots to the
left) exhibited errors on all axes. On the other hand, the
factored quaternion algorithm (depicted by three subplots
to the right) showed no errors in either the pitch or roll
axes.

D. Algorithm Efficiency
To make a rough comparison of the efficiency of the

QUEST and factored quaternion algorithms, the time
required for each to complete the computation of 5000
orientation quaternions was determined. This number
represents 50 seconds of data at a sampling rate of 100
Hz. Both algorithms were able to complete the 5000
quaternion calculations in less than 10 seconds. The
calculations were completed in 9.8 seconds by the QUEST
algorithm and 7.8 seconds by the factored quaternion
algorithm. In this experiment, the factored quaternion
algorithm was approximately 25% faster that the QUEST
algorithm.

IV. Conclusion
The paper has presented a intuitive algorithm for calcu-

lating orientation using accelerometer and magnetometer
data. The algorithm produces estimates in quaternion
form through a series of sequential rotations. In the algo-
rithm, magnetometer data is not used to calculate orienta-
tion relative to the vertical, thus magnetic variations result
in errors only in the horizontal plane. This property of the
algorithm is demonstrated experimentally. Singularites in
the numerical implementation are avoided through the use
of a method that assigns an offset body coordinate system
when a singularity occurs. The algorithm is efficient and
does not require the evaluation of trigonometric functions.
Experimental results indicate that when combined with
a low-pass filter for accelerometer data, the algorithm is
able to track orientation of a human limb segment. The
algorithm has been successfully used in real-time human
body motion tracking applications.

Acknowledgments

This research was supported in part by Army Re-
search Office (ARO). Authors would like to thank James
Calusdian for his technical support during the course of
this project, Andreas Kavousanos-Kavousanakis for im-
plementing the QUEST algorithm, and Conrado Aparicio
for implementing the factored quaternion algorithm.

References

[1] E. Foxlin, M. Harrington, and Y. Alshuler, “Miniature 6DOF
inertial for track hmds,” in SPIE vol. 3362, Helmet and Head-
Mounted Displays III, AeroSense 98, Orlando, FL, Apr. 1998.

[2] E. Foxlin, “Inertial head-tracker fusion by a complementary
separate-bias Kalman filter,” in Virtual Reality Annual Inter-
national Symposium (VRAIS 96), Santa Clara, CA, Mar. 1996,
pp. 185–194.

[3] E. R. Bachmann, “Inertial and magnetic tracking of limb
segment orientation for inserting humans into synthetic en-
vironments,” Ph.D. dissertation, Naval Postgraduate School,
Monterey, CA, 2000.

[4] E. R. Bachmann, R. B. McGhee, X. Yun, and M. J. Zyda,
“Inertial and magnetic posture tracking for inserting humans
into networked virtual environments,” in Proceedings of the
ACM Symposium on Virtual Reality Software and Technology
(VRST 2001), Banff, Alberta, Canada, Nov. 2001, pp. 9–16.

[5] A. Gallagher, Y. Matsuok, and A. Wei-Tech, “An efficient
real-time human posture tracking algorithm using low-cost
inertial and magnetic sensors,” in Proceedings of 2004 IEEE
International Conference on Robotics and Automation, Sendai,
Japan, Sept. 2004, pp. 2967–2972.

[6] H. J. Luinge, “Inertial sensing of human movement,” Ph.D.
dissertation, University of Twente, Dec. 2002.

[7] R. Zhu and Z. Zhou, “A real-time articulated human motion
tracking using tri-axis inertial/magnetic sensors package,” IEEE
Transactions on Neural Systems and Rehabilitation Engineer-
ing, vol. 12, no. 2, pp. 295–302, June 2004.

[8] Z. Yan and K. Yuan, “An orientation tracking algorithm valid
in a hemisphere space based on gravity field and earth magnetic
field,” in Proceedings of the 2004 IEEEInternational Conference
on Information Acquistion, Hefei, China, June 2004, pp. 236–
239.

[9] D. Gebre-Egziabher, G. H. Klkaim, J. Powell, and B. W.
Parkinson, “A gyro-free quaternion-based attitude determina-
tion system suitable for implementation using low cost sensors,”
in Proceedings of IEEE 2000 Position Location and Navigation
Symposium, San Diego, CA, Mar. 2000, pp. 185–192.

[10] G. Wahba, “Problem 65-1: A least squares estimate of satellite
attitude,” SIAM Review, vol. 7, no. 3, p. 409, July 1965.

[11] M. D. Shuster and S. D. Oh, “Three-asix attitude determination
for vector observations,” Journal of Guidance and Control,
vol. 4, no. 1, pp. 70–77, 1981.

[12] J. Farrell and J. Stuelpnagel, “A least squares estimate of
spacecraft attitude,” SIAM Review, vol. 8, no. 3, pp. 384–386,
1966.

[13] P. Davenport, “Attitude determination and sensor alignment
via weighted least squares affine transformations,” in NASA X-
514-71-312, Goddard Space Flight Center, Greenbelt, Maryland,
1965.

[14] R. B. McGhee, “The factored quaternion algorithm
for orientation es-timation from measured earth
gravity and magnetic field,” MOVES Institute,
Naval Postgraduate School, Monterey, CA,
Technical Memorandum, 2004. [Online]. Available:
http://www.users.muohio.edu/bachmaer/Papers/Factored%20
Quaternion.pdf

[15] E. R. Bachmann, X. Yun, D. McKinney, R. B. McGhee, and
M. J. Zyda, “Design and implementation of MARG sensors for
3-DOF orientation measurement of rigid bodies,” in Proceed-
ings of 2003 IEEE International Conference on Robotics and
Automation, Taipei, Taiwan, May 2003.

[16] J. B. Kuipers, Quaternions and Rotation Sequences. Princeton,
NJ: Princeton University Press, 1999.



REGULAR PAPER SUBMISSION TO JOURNAL OF ROBOTIC SYSTEMS 2006 10

[17] J. Stuelpnagel, “On the parameterization of the three-
dimensional rotation group,” SIAM Review, vol. 6, pp. 422–430,
1964.

[18] M. D. Shuster and G. A. Natanson, “Quaternion computation
from a geometric point of view,” Journal of the Astronautical
Sciences, vol. 41, no. 4, pp. 545–556, 1993.



 
 

 

  

Abstract—Numerous applications require a self-contained 
personal navigation system that works in indoor and outdoor 
environments, does not require any infrastructure support, and 
is not susceptible to jamming.  Posture tracking with an array of 
inertial/magnetic sensors attached to individual human limb 
segments has been successfully demonstrated. The "sourceless" 
nature of this technique makes possible full body posture 
tracking in an area of unlimited size with no supporting 
infrastructure. Such sensor modules contain three orthogonally 
mounted angular rate sensors, three orthogonal linear 
accelerometers and three orthogonal magnetometers. This 
paper describes a method for using accelerometer data 
combined with orientation estimates from the same modules to 
calculate position during walking and running. The periodic 
nature of these motions includes short periods of zero foot 
velocity when the foot is in contact with the ground. This pattern 
allows for precise drift error correction. Relative position is 
calculated through double integration of drift corrected 
accelerometer data. Preliminary experimental results for 
various types of motion including walking, side stepping, and 
running document accuracy of distance and position estimates. 

I. INTRODUCTION 
OSITION tracking of human movement commonly 
requires an unrestricted line of sight between one or more 

receivers and one of more transmitters. In inside-out systems 
a sensor attached to a person to be tracked, passively or 
actively receives information from multiple “sources” 
positioned around a tracking volume. In outside-in tracking 
systems, multiple sensors positioned around a tracking 
volume sense active or passive sources attached to the object 
to be tracked. The global positioning system (GPS) is a 
familiar example of a sourced inside-out tracking system. 
Optical tracking systems that use multiple cameras to view 
active or passive markers and calculate position through 
triangulation are an example of a sourced outside-in tracking 
system. 
 Inside-out or outside-in tracking systems require extensive 
set-up and calibration of the tracking volume. Line of site and 
noise restrictions limit range as well as where these systems 
can be used. In some cases jamming or intentional 
interference makes their use impractical. “Sourceless” 

 
Manuscript received September 15, 2006. This work was supported in part 

by the U.S. Army Research Office (ARO) and the Navy Modeling and 
Simulation Office (NMSO).  

X. Yun, Hyatt Moore IV, and James Calusdian are with the Naval 
Postgraduate School, Monterey, CA 93943, USA (corresponding author 
phone: 831-656-2629; fax: 831-656-2760; e-mail: yun@ ieee.org).  

E. R. Bachmann, is with Miami University, Oxford, OH 45056 USA. 
e-mail: bachmaer@muohio.edu. 

 

systems are self-contained. Data that are produced by sensors 
attached to a person can be used to calculate position without 
reference to other devices or transmitters. In theory, a 
sourceless system with accuracy comparable to a sourced 
system is superior since it does not require extensive 
infrastructure positioned around or above a tracking 
environment of limited sized and is not susceptible to line of 
sight restrictions between a transmitter and source.  
 Sourceless orientation tracking using small 
inertial/magnetic sensor modules containing triads of 
orthogonally mounted accelerometers, angular rate sensors, 
and magnetometers has been successfully demonstrated. 
Several commercial posture tracking systems based on 
orientation tracking have resulted.  The individual sensors 
used in inertial/magnetic sensor modules are low-cost 
Micro-Electro-Mechanical Systems (MEMS) sensors.  Low 
cost MEMS accelerometers are susceptible to drift errors. 
Until recently, it was widely thought that position tracking 
using data from such accelerometers was not possible due to 
the quadratic growth of errors caused by sensor drift during 
double integration.  
 Most types of human movement including walking, side 
stepping, and running include repeated recognizable periods 
during which the velocity and acceleration of the foot are 
zero. These brief periods occur before entering the swing 
phase of the gait cycle each time the foot contacts the ground 
during the stance phase. Recognition of these periods allows 
determination of the drift error that occurred in between them. 
This allows precise corrections to be made to accelerometer 
data in either a forward or backward manner. The corrected 
accelerometer data combined with magnetic and angular rate 
data can then be used to calculate the direction and magnitude 
of displacement that occurs during each step. This allows 
accurate measurement of position relative to an initial starting 
point. 
 This paper describes a self-contained method for relative 
position tracking of a human engaged in various types of 
motion involving discrete steps. This method is based on the 
use of a single inertial/magnetic sensor module attached to the 
foot. The primary contributions of this work are: 
• A method for tracking 2-D and 3-D position of human 

movement using a self-contained inertial/magnetic 
sensor module. 

• Preliminary experimental results for various human 
motion including straight line walking, circular walking, 
side stepping, backward walking, running, and climbing 
stairs. 

 This remainder of this paper describes in detail how 

Self-contained Position Tracking of Human Movement Using 
Small Inertial/Magnetic Sensor Modules  

Xiaoping Yun, Eric R. Bachmann, Hyatt Moore IV, and James Calusdian 

P 



 
 

 

accelerometer data in conjunction with orientation estimates 
produced using data from inertial/magnetic sensor modules 
can be used to track human position in three dimensions 
without any supporting infrastructure. Section II presents 
related work and describes the foundation on which the work 
presented here is built. Section III is a detailed description on 
the sourceless position tracking method. Experimental results 
are presented in section IV. The final section is a summary 
and conclusions.  

II. BACKGROUND 
Much research has focused on using inertial and in a few 

cases magnetic sensors to measure distance walked and/or 
track position. Many methods have involved attempts to 
count steps and estimate distance based on an approximate 
step length. Other work has double integrated acceleration 
data recorded during the gait swing phase to estimate 
distance. Few have attempted to determine the direction of 
motion. In most cases, distance estimation errors when using 
more complex inertial sensor combinations have been only 
slightly better than those obtained using commercial 
pedometers. 

 Simple pedometers focus on counting steps. Based on 
this step count and a fixed step length, a pedometer unit can 
estimate distance traveled. In pedometers, step count is 
generally estimated by measuring vertical acceleration using 
a single axis piezo-electric accelerometer or by monitoring a 
spring suspended horizontal lever that moves up and down in 
response to vertical accelerations of the hips. The accuracies 
of pedometer produced step counts vary greatly depending on 
the type of technology used, walking speed, and physical 
aspects of individuals begin tracked [1]. Pedometers do not 
have the ability to differentiate between different types of gait 
such as running, shuffling, and side stepping. In [2], Crouter 
et al. tested and compared several electronic pedometers in 
estimating step counts and distance traveled with subjects 
walking on a treadmill. Several models were able to count 
steps to within ±1% of the actual value during normal 
uniform walking. Estimates of distance traveled were less 
accurate with most units estimating mean distance to within 
±10% at a walking speed of 80 meters per minute. Overshoots 
tend to occurs at slower speeds. Undershoots tend to occur at 
higher speeds. In [3], Schneider et al. compared pedometer 
performance when subjects walked over a closed 400 meter 
course. Accuracy of step counts as well as distance estimates 
decreased in this more natural environment. Step count 
accuracy decreased to ± 3%. Since walking speed and stride 
length was no longer artificially controlled using a treadmill, 
the accuracy of distance estimates showed an greater 
decrease.  

 In [4], Pappas et al. describe a reliable gait phase 
detection system based on a single axis angular rate sensor 
and three force sensitive resistors. In this system, all motion is 
assumed to take place in the sagittal plan. The angular rate 
sensor is mounted to the heel with its sensing axis 

perpendicular to the sagittal plan and is used to measure the 
rotational velocity of the foot. The force sensitive resistors are 
taped to the bottom of the same foot. Using a heuristic based 
algorithm designed to detect four different gait phases 
(stance, heel-off, swing, and heel-strike), the system was able 
to detect the phases with 99% reliability. Unlike simple 
pedometers, the described method worked well to detect gait 
phases during walking over level and unleveled surfaces as 
well as walking up and down stairs. In addition, the system 
demonstrated robustness in ignoring non-gait events such as 
standing up and sitting down, bending, and turning in place. 
The system did not have the ability to estimate distance or 
direction traveled. 

 Zijlstra and Hof use a single triaxial accelerometer, 
measured leg length, and an algorithm based on an inverted 
pendulum model [5] to predict the body center of mass 
trajectory during walking. The method determines foot 
contacts by monitoring for changes in sign of the forward 
acceleration of the lower trunk. Unlike pedometers which use 
a fixed step length, mean step length and walking speed are 
estimated based on up and down movement of the trunk. 
Experimental results in [6] include data from both treadmill 
and level ground walking trails. In most cases, the described 
method identified foot contacts with nearly 100% accuracy. 
In treadmill experiments, maximum observed differences 
between predicted speed and treadmill speed were no greater 
than 16%. In level ground walking experiments with 
presumably less uniform gait, differences between predicted 
mean speed and calculated mean speed did not exceed 20%. 
This method is able to detect gait event with great accuracy. 
However, due to the magnitude of the distance measurement 
errors and the inability to estimate direction of the travel, the 
navigation performance of this method shows little 
improvement over that of a simple pedometer. 

Sagawa et al. [7], Sabatini et al. [8], and Cavallo et al. [9] 
use a combination of accelerometers and rate sensors attached 
to the foot to measure gait parameters and distance traveled. 
The Sagawa approach uses a tri-axial accelerometer and a 
single axis angular rate sensor attached to the toe (an 
atmospheric pressure sensor is used to measure change in 
altitude). The Sabatini and Cavallo approach uses a bi-axial 
accelerometer and a single axis angular rate sensor attached 
to the instep.   

Sagawa et al. assumes that foot roll and yaw are zero 
during normal walking. Sabatini and Cavallo assume all 
motion takes place in a sagittal plane. In both cases, a rate 
sensor is mounted perpendicular to the sagittal plane. Gait 
events such as heel-off, heel-strike, and swing are detected 
using angular rats data. Instead of counting steps, walking 
speed and stride length are estimated by double integrating 
acceleration data during the swing phase. For best 
performance, the tracked subject is required to maintain a 
uniform walking speed and gait. Both research efforts were 
able to detect gait events with high levels of confidence. In 
limited experimental results, Sagawa et al. reports a 



 
 

 

Figure 1.  Results of a one-meter sliding motion 
experiment with original accelerometer data and 
integrated velocity and position on the left and the 
drift-corrected data and resulting velocity and 
position on the right side. 

maximum distance estimation error of 5.3% over a 30 meter 
course. Reported experimental results obtained while 
walking over a 400 meter closed course in [9] characterize 
errors as being much smaller with an average measured 
distance of 401.2 ±4.61 meters or just over a 1% error. 
Though GPS heading information was used in [9] to 
reconstruct the path of travel, neither of the systems described 
is able to determine the direction of displacement or position. 

A great deal of research has focused on integrating inertial 
dead reckoning systems with positional information provided 
by GPS and DGPS. In [10], Jarawimut et al. implement a 
pedestrian navigation system. During periods of GPS 
availability, compass bias and average step length are 
updated to make dead reckoning results more closely match 
GPS estimates. When GPS information is unavailable, 
distance traveled is calculated by multiplying the number of 
steps times an average step length. A compass is used to 
estimate the direction of travel and the system is able to 
provide an estimate of position as long as the tracked subject 
is walking in a normal manner. 

 Other attempts to produce a personal navigation based 
on the integration of inertial/magnetic sensors are 
documented in [11] and [12]. In [11] Judd suggests that step 
length can be estimated based on a linear relationship with 
cadence. The described system consists of a GPS receiver, a 
three dimensional compass, and tri-axial accelerometer. The 
accelerometer is used as a tilt sensor to determine the 
horizontal component of the magnetic field and to detect foot 
falls. Average step length is estimated by a Kalman filter 
algorithm. Distance traveled is based on the product of the 
number of steps and the estimated step length. Again this 
approach is limited to level walking in open spaces. The 
personal navigation module described in [12] contains a 
tri-axial magnetometer, a tri-axial accelerometer, a 
barometric pressure sensor, and a GPS receiver. Distance 
traveled is still based on the step length/step count product. It 
is claimed that unlike other similar systems, a pattern 
recognition algorithm is used to identify acceleration 
signatures related to different types of movement such as 
forward and backward walking, lateral walking, and running. 
Performance claims for a commercial version of the system 
give a 2D positional accuracy of better than 5% of distance 
traveled for “forward walking under normal conditions [13].” 
No accuracy figures are given for other types of motion. 
However, in independent use of the product, the Sendero 
Groups reports typical errors on the order of 15% [14].  

III. METHOD FOR TRACKING POSITION 
In theory, the output of an accelerometer can be 

integrated twice to obtain displacement information.  
However, low-cost accelerometers are susceptible to drift 
errors.  The position estimates based on double integration 
can diverge in a short time period lasting only a few 
seconds.  Drift correction is thus essential for tracking 
position using low-cost accelerometers.  In this section, a 

drift correction method is first described.  An application 
of this method to position tracking of a walking person is 
then detailed. 

A. Correcting Accelerometer Drift 
The drift correction method is best illustrated with the 

following experiment.  An accelerometer is first placed on 
a level table top, and then is slid along a straight line for a 
distance of one meter. The initial and final velocities are 
zero.  Figure 1 shows the accelerometer measurement data, 
as well as estimated velocity and position for such an 
experiment in which an Analog Devices ADXL210E 
accelerometer was used. The three plots on the left side 
show the results of the original data, and the plots on the 
right side show the results of the corrected data. The 
correction procedure is discussed below.  The velocity is 
obtained by integrating accelerometer measurements once, 
and the position is obtained by integrating the velocity one 
more time. While the sensor actually moved a distance of 
one meter, the estimated distance obtained by double 
integration is 0.80m as seen in the lower-left plot.  A close 
examination of the velocity in the middle-left plot indicates 
that the final estimated velocity is -0.23m/s at the end of the 
motion period, although the sensor stopped moving and the 
actual velocity was zero at this point.  The error in the 
estimated velocity is due to drift in accelerometer 

measurements.  Because the final velocity is known to be 
zero in this case, a drift correction can be applied to the 
accelerometer measurements so that the final estimated 
velocity is zero.  The three plots on the right side of Figure 
1 are the corrected acceleration, velocity, and distance.  It 
is seen that the final velocity is now zero.  As a result of this 
drift correction, the estimated distance moved is 1.01m.  
Clearly, this drift correction method makes it possible to 
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Figure 3.  Three components of the velocity obtained by 
integrating the original acceleration measurement. 

Figure 2.  Original and drift-corrected data for a 
three-meter sliding motion experiment. 

obtain accurate position information through double 
integration.  Many more experiments were conducted, and 
similar results were obtained.   Figure 2 shows the results 
of an experiment where the sensor was moved a distance of 
three meters.  With the uncorrected data, the final estimated 
distance is 2.01m, yielding an estimation error of 33%.  
After applying the drift correction, the final estimated 

distance is 2.99m with an estimation error of only 0.3%.  

B. Position Tracking of a Person 
 Human gait motion is cyclic in nature.  During walking, 
each gait cycle consists of two phases: a stance phase and a 
swing phase. The stance phase is the portion of the cycle 
during which a foot is in contact with the ground. The swing 
phase is the portion of the cycle during which the same foot 
is not in contact with the ground. The stance phase takes 
approximately 60% of the gait cycle, and the swing phase 
takes the remaining 40%. During walking (rather than 
running or jumping), there are two periods of time in a 
single gait cycle when two feet are both in contact with the 
ground. This period of double support occupies about 20% 
of the gait cycle [15].  Based on the results of experiments 
presented in the previous subsection, it is possible to obtain 
accurate position information by double integrating 
accelerometer measurements as long as drift in 
accelerometer measurements can be corrected.  During the 
stance phase, the foot is in contact with the ground, and foot 
velocity is zero. If an inertial/magnetic sensor module is 
attached to a foot, drift in accelerometer measurements can 
be corrected each time the foot is in the stance phase of the 
gait cycle [7].  If the estimated foot velocity is not zero, a 
drift correction can be applied to the accelerometer 
measurements as discussed in the previous subsection. 
Using this approach, Sagawa, etc. [7] and Gavallo, etc. [9] 
reported early efforts on estimating walking distance. 
 In this work, an inertial/magnetic sensor module is 
attached to the foot, and the 3-dimensional position (not just 

walking distance) of a person is estimated and tracked.  The 
inertial/magnetic sensor modules considered for this study 
contains triads of orthogonally mounted accelerometers, 
angular rate sensors, and magnetometers.  Examples of such 
inertial/magnetic sensor modules include the MARG sensor 
[16], the 3DM-GX1 orientation sensor from MicroStrain 
[17], the nIMU from MEMSense [18], the MTx orientation 
tracker from Xsens [19], and the InertiaCube3 from 
InterSense [20].   These inertial/magnetic sensor modules 
are primarily designed for tracking 3-dimensional 
orientation.  Algorithms used by these sensor modules for 
processing accelerometer, angular rate, and magnetometer 
measurements to produce orientation output typically use a 
Kalman filter [21].  In addition to providing orientation 
output in Euler angles and/or quaternions, some sensor 
modules including the MARG, 3DM-GX1 and nIMU also 
optionally provide scaled measurements of acceleration, 
angular rate, and magnetic field.  3DM-GX1 and nIMU are 
used in this study. 
 Acceleration measurements provided by the 
inertial/magnetic sensor module are in sensor or body 
coordinates.  These measurements are first transformed into 
the earth coordinates.  The transformation is accomplished 
by using the quaternion output of the sensor module.  The 
three components of the acceleration measurements in the 

earth coordinates are then integrated to obtain velocity 
estimates. Figure 3 depicts the three components of the 
integrated velocity for an eight-meter walk.  During the 
stance phase, each of the velocity components should be 
zero.  However, it is seen that the estimated velocity tends to 
drift over the time.  Applying the drift correction method 
discussed earlier each time the gait cycle enters the stance 
phase results in the corrected velocity profile shown in 
Figure 4. The corrected velocity is integrated once more to 
obtain 3-dimensional position information.  The accuracy 
of the position information will be discussed in the next 
section which examines detection of gait events during 
various mobility modes including straight line walking, 
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Figure 4.  Velocity profile obtained from drift-corrected 
acceleration. 

Figure 5.  Three components of the foot acceleration in 
the earth coordinate system. 
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Figure 6.  Foot angular rate in the ankle axis. 

circular walking, running, side stepping, backward 
walking, and climbing stairs. 
 

C. Detecting Gait Events 
 In order to apply the drift correction method for 
walking as discussed above, it is necessary to reliably 
detect gait events, particularly the stance phase, using only 
measurement data. Both accelerometer and angular rate 
data can be used for this purpose. 
  Figure 5 shows the three components of linear 
acceleration in the earth coordinates during walking.  
While all three acceleration components exhibit a cyclical 
pattern, it can be observed that z-axis acceleration data 
provide the strongest indication of gait events.  During the 
stance phase, acceleration is near zero. Since there are a 
number of zero-crossings during the swing phase, a zero 
threshold and a time heuristic must be applied to the 
acceleration data to detect stance phases. The time heuristic 
is required to avoid classifying any zero crossing in the 

swing phase as a stance phase.  If the acceleration is within 
the threshold for a specified period of time, the foot is 
determined to be in the stance phase.     
 Angular rate measurements also provide an indication 
of gait events.   The angular rate in the sensor coordinates 
measuring ankle axis rotation is more prominent in 
differentiating the stance phase from the swing phase.  
Figure 6 shows the x-axis (or ankle axis) angular rate for a 
typical walk.  The angular rate is near zero during the 
stance phase. A heuristic similar to the method discussed 
above can be applied to the angular rate data to detect the 
stance phase.  In empirical studies involving several 
different people, the use of angular rate data was found to 
be more reliable than angular rate data.   

IV. EXPERIMENTAL RESULTS 
The following sub-sections describe preliminary 

experimental results demonstrating the accuracy of position 
estimation using inertial/magnetic sensor modules. These 
experiments include trials in which the tracked subject 
walked a specified distance in a straight line, walked around a 
closed circuit that was roughly circular in shape, ran a 
specified distance in a straight line, and finally followed a 
square pattern using three different types of motion. 
Preliminary results are also shown for walking up stairs. Data 
for each type of experiment was collected using several 
different individuals. These brief results are designed to 
demonstrate the robustness of position tracking using 
inertial/magnetic sensor modules and make apparent the wide 
applicability of this method to numerous applications. At the 
time of this writing, further experiments are under way as the 
position tracking method is further refined. 

All experiments were conducted using a single sensor 
module attached to the foot as depicted in Figure 7. Distances 
walked were measured using a standard measuring tape. Data 
was collected in real-time and post-processed using a 
program written in Matlab. Sampling rate was approximately 
70 Hz. 

A. Straight Line Walking 
 Straight line walking experiments were conducted to 

validate the feasibility of estimating walking distance on a 
level surface. These experiments measure only displacement 
along a straight line. No attempt was made to estimate 
position. Table 1 shows experimental results for 24-meter 
straight line walk conducted in an indoor laboratory 



 
 

 

environment. Three different experimental subjects with 
varying stride lengths were used. The average distance 
estimation error for the indoor walking experiments is 5.5% 
with a standard deviation of 2.4%. Table 2 shows results for 
longer 120-meter straight line walks conducted in an outdoor 
environment.  Two different subjects were used in these 
experiments. The distance estimation error for this small 
number of experiments was less than that observed during the 
indoor experiments with an average error of 1.3% and a 
standard deviation of 1.3%. Maximum error for the 
120-meter walking experiments was 3.3%.  

 
Table 1.  Experimental results of 24-meter straight line walk. 

Experiment 
# Step Count 

Estimate
d 

Distance 
(m) 

Error 

1 16 23.59 1.7% 

2 16 21.95 8.5% 

3 17 22.70 5.4% 

4 17 25.61 6.7% 

5 17 25.67 7.0% 

6 17 23.07 3.9% 

 
The marked difference in estimation accuracy between 

indoor and outdoor environments is attributed to errors in 
transforming measurement data from senor coordinates to an 
Earth fixed coordinate system. Magnetometer measurements 

along with accelerometer and angular rate measurements are 
used to compute an orientation quaternion, which is in turn 
used to transform data. In the presence of magnetic 
interference, orientation estimation algorithms designed for 
inertial/magnetic sensor modules exhibit errors in azimuth 
angle estimates [22]. In an indoor environment there is 
considerably more magnetic interference due to the presence 
of file cabinets, computers, monitors, and other laboratory 
equipment. This interference can causes estimated path of 
travel to appear to curve or wobble to the right and left when 
the true path of travel is a straight line. A correction method 
for these errors is currently under investigation. 
 
Table 2.  Experimental results of 120-meter straight line walk 
in an outdoor environment. 

Walker Experiment # Step 
Count 

Distance (m) % Error 

A 1 83 116.03 3.3% 

A 2 82 119.42 0.5% 

B 1 80 119.12 0.7% 

B 2 79 119.05 0.8% 

 

B. Straight Line Running 
The described position estimation method is applicable to 

any context involving repeated short periods during which 
angular rate and velocity are zero. During running, as with 
walking, there are brief periods of time in the gait cycle 
during which the foot is in contact with the ground.  Although 
these zero velocity periods are relatively short, the same 
method can be used to correct drift in accelerometer 
measurements.  Relative to walking, it is more difficult to 
detect the stance phase from running data due to the short 
duration of these periods.  

Straight line running experiments were conducted over the 
same 120-meter course used in the outdoor walking 
experiments. Again these experiments tested only the ability 
to measure displacement along a straight line.  Table 3 shows 
the results of two running experiments over a 120-meter long 
course. The maximum error for these experiments was within 
4.75% of the actual distance covered. 

 
Table 3.  Experimental results of 120-meter straight line 
running  

Test 
# 

Step 
Count

Actual 
Distance (m)

Estimated 
Distance (m) 

Error 

1 57 120.0 115.4 3.80% 

2 54 120.0 114.3 4.75% 

 

Figure 7.  MemSense nImu mounted on foot for 
position tracking during walking, side stepping, 
and running. 



 
 

 

Figure 8.  Position tracking of circular walking 
trajectory. 

Figure 9.  Position tracking results of combined 
forward walking, side stepping, and backward 
walking.

Figure 10.  Estimated 3-D position of a person 
climbing stairs shown in the next figure. 

C. Circular Walking 
Circular or curved walking experiments were the first to be 

conducted in order to validate the feasibility of tracking 2-D 
position. During these experiments the position of foot was 
simultaneously monitored by an optical tracking system.  
Figure 8 shows the position as estimated using 
inertial/magnetic sensor module data. Both axes are plotted in 
meters. The starting and ending point for the foot was the 
same point. This point is (0, 0) in the plot.   Although truth 
reference data is not available as of the time of this writing, 
the accuracy of 2-D position tracking can be seen by 
observing that the estimated trajectory returns to the starting 
point following the period during which the walk occurred 
with high accuracy. 

 

D. Combined Forward Walking, Side Stepping, and 
Backward Walking 
To demonstrate that the position tracking method can be 

applied to mixed types of human movement, a 5.5 meter 
square pattern was measured and marked in an outdoor 
environment.  The test subject followed this marked course 
by walking forward on the first leg of the square, side 
stepping to the right on the second leg of the square, walking 
backward on the third leg of the square, and side stepping to 
the left on the last leg of the square before the foot was 
returned to the starting point. Figure 9 shows the position 
tracking results for this mixed motion experiment.  The x-axis 
is the north direction, and the y-axis is in the east direction.  
The starting and ending point is again (0, 0).  It can be 
observed that the end point and starting point almost coincide, 
with a separating distance of 0.08 meters.  The estimated total 
walking distance is 21.6 meters, while the actual total 
distance is 22.0 meters giving a distance estimation error of 
1.8%.  

E. Climbing Stairs 
The inertial/magnetic sensor module provides 

3-dimensional acceleration measurements in x-, y-, and 
z-axes. Thus, it is possible to track 3-dimensional position. 
The experiments described so far were primarily concerned 
with correcting and integrating x- and y-axis acceleration. 
Vertical axis acceleration can be corrected and integrated in 
the same manner in order to estimate relative height.  Figure 
10 depicts the 3-D estimated trajectory of a person who 
climbed stairs shown in Figure 11. In can be qualitatively 
observed that the estimated trajectory in Figure 10 closely 
resembles the actual profile of stairs.  

 

V. WORK IN PROGRESS 
At the time of this writing further experiments are being 

conducted to evaluate, improve, and document the accuracy 
of position estimation using inertial/magnetic sensor 
modules. These experiments include mixed motion types and 
additional tracking methods for the purpose of providing 
truth data.  



 
 

 

Figure 11.  Photo of the stairs used in the experiment 
for estimating 3-D position. 

The experimental results provided in this paper were 
obtained by post-processing the sensor data. Efforts are 
currently underway to implement a real-time system. This 
system will be integrated into an immersive virtual 
simulation.  

As seen in the indoor walking experiments, orientation 
estimation errors caused by a non-uniform magnetic 
environment can cause errors in transforming data from 
sensor coordinates to Earth coordinates. A correction method 
has been devised and is currently being tested. 

VI. CONCLUSION 
Self-contained position tracking using data from 

inertial/magnetic modules has applicability to a wide number 
of applications. Preliminary experimental results presented in 
this paper document that this technique can be used to track 
three dimensional position during a variety of motion types. 
Estimated errors from these experiments indicate that the 
method is accurate. Work is currently underway to further 
refine the method. 
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 Abstract - A human body motion tracking system based on 
use of the MARG (Magnetic, Angular Rate, and Gravity) 
sensors has been under development at the Naval Postgraduate 
School and Miami University.   The design of a quaternion-
based Kalman filter for processing the MARG sensor data was 
described in [1].  This paper presents the real-time 
implementation and testing results of the quaternion-based 
Kalman filter.  Experimental results validate the Kalman filter 
design, and show the feasibility of the MARG sensors for real-
time human body motion tracking. 
 
 Index Terms – Quaternion-based Kalman filter, human 
body motion tracking, MARG sensors, inertial/magnetic sensors.  
 

I.  INTRODUCTION 

 Inertial/magnetic sensor modules can be used to 
estimate orientation of a rigid body relative to an Earth fixed 
reference frame without the need of an artificially generated 
reference. The estimates produced are based entirely on 
inertial quantities related to the motion and attitude of the 
module and the orientation of the ambient magnetic field 
relative to the module. If a single sensor module is placed 
on each of the segments of an articulated rigid body, the 
“posture” of the structure can be determined. Such 
“sourceless” orientation tracking has significant advantages 
over other methods owing to its low susceptibility to various 
sources of noise and lack of range limitations [8,9]. If the 
human body is modeled as articulated rigid bodies 
consisting of approximately fifteen segments, posture and 
gait could be accurately tracked and measured over an 
unlimited area. Thus, this methodology of body tracking 
could have important applications in virtual environments, 
robotic teleoperation, personal navigation, and human 
monitoring applications [10]. 

The Naval Postgraduate School and Miami University 
have teamed up to develop an inertial/magnetic sensor 
module called the MARG sensor for tracking human body 
motions in real time [2].  MARG (Magnetic, Angular Rate, 
and Gravity) sensor modules contain three magnetometers, 
three angular rate sensors, and three accelerometers. Each 
sensor type is orthogonally mounted in a triad.  This paper 
presents the implementation and experimental testing results 
for a quaternion-based Kalman filter designed for the 
MARG sensors. 
 An earlier version of the Kalman filter implemented 
here was described in [1].  The overall filter design remains 
unchanged. However, some portions of the filter design 

have been modified. In particular, the original design used a 
reduced-order Gauss-Newton method to compute an 
orientation quaternion from accelerometer and 
magnetometer measurements.  This part of the filter was 
first modified to use the QUEST Algorithm [3] and later the 
Factored Quaternion Algorithm [4,5].  The QUEST 
algorithm [3,6] was created to determine the attitude of a 
rigid body in reference to a fixed coordinate system, using a 
set of measurement vectors. The algorithm computes a 
rotation (attitude) quaternion that rotates the measurement 
vectors to match the reference vectors.  More recently, the 
Factored Quaternion Algorithm [4] was derived.  It has the 
same goal as the QUEST algorithm but orientation estimate 
are derived through the measurement of sequential rotations 
about three orthogonal axes.  It has been shown that the 
Factored Quaternion Algorithm has equal or better 
performance than the QUEST algorithm in estimating 
orientation quaternions with MARG sensor measurements 
[5].  Nevertheless, the Factored Quaternion Algorithm is 
computationally more efficient by about 25%, and is thus 
used as part of the filter design in the latest implementation 
[5]. 
 This paper is organized as follows.  Section II presents 
the process model of the Kalman filter for human body 
motion tracking.  Section III describes implementation 
issues of the Kalman filter with a focus on how the 
nonlinear process model was first linearized and then 
discretized.  Experimental modeling of the process noise 
covariance matrix and the measurement noise covariance 
matrix is also detailed.  Section IV reports the MATLAB 
simulation and offline testing results of the Kalman filter.  
Section V describes the implementation and testing results, 
followed by conclusions in section VI. 
 

II. KALMAN FILTER PROCESS MODEL 

 The process model of the quaternion-based Kalman 
filter presented in [1] will be briefly reviewed in this 
section.  A diagram of the process model is shown in Figure 
1.  In this model, the angular rates ω  in body coordinates 
are assumed to be generated by a first-order linear system 
with a white noise forcing function w. The time constant of 
the first-order linear system is . The orientation estimate 
produced by the filter is .  The angular rates 

τ
q̂ ω  and the 

quaternion derivative  are related by [7]: q

__________________ 
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1q = q ω
2

⊗           (1) 

where q is the orientation quaternion in Earth coordinates, 
and  represents quaternion multiplication.  In order to 
take advantage of computational simplifications and 
efficiencies possible of unit quaternions, the quaternion is 
normalized to unit length in the last step of the process 
model.  It is noted that quaternions are used to represent 
orientation in the filter design because quaternions do not 
have the singularity problem associated with Euler angles 
and eliminate the computational expenses related to 
approximation of transcendental functions. 

⊗

The state vector is defined as a 7-dimensional vector 
with the first three components being the angular rates and 
the last four being the elements of the quaternion. The 
process model expressed in terms of state equations is 
characterized as follows: 

( )i i i
i i

1 1x = - x + w t      i = 1,2,3
τ τ

 (2) 

for the angular rates, and 

[ ]4 1 5 2 6 3
1
2 7x = - x x + x x + x x ,  (3) 

[5 1 4 2 7 3
1
2

]6x = x x - x x + x x , (4) 

[ ]6 1 7 2 4 3
1
2 5x = x x + x x - x x , (5) 

[7 1 6 2 5 3
1
2

]4x = -x x + x x + x x  (6) 

for the quaternion components. 
The MARG sensor provides a 9-dimensional 

measurement vector, consisting of three elements of the 
linear acceleration vector, three elements of the local 
magnetic field, and three elements of the angular rate 
vector.  If this nine-dimensional measurement vector is 
provided directly to the Kalman filter as measurements, the 
measurement equations are nonlinear and the resulting 
Kalman filter becomes complex and computationally 
expensive.  An alternative approach to the Kalman filter 
design was suggested in [1].  This approach uses the 
Newton method or a reduced-order Gauss-Newton method 
to find a quaternion corresponding to each set of accelerator 
and magnetometer measurements.  These computed 
quaternion and angular rate measurements are then 
presented to the Kalman filter as measurements.  As a result, 

the measurement equation for the Kalman filter is linear and 
is given by: 

( )z = Hx + v t            (7) 
where z is the seven-dimensional measurement vector, H is 
a 7 ×  identity matrix, and v is the vector of measurement 
noises.  

7

 Although the reduced-order Gauss-Newton method 
presented in [1] was considerably more efficient than the 
full-order Gauss-Newton method, it still is an iterative 
method that needs to be executed several times before 
convergence occurs.  Following additional work, the 
reduced-order Gauss-Newton method was replaced by the 
QUEST Algorithm [3,6], and more recently by the Factored 
Quaternion Algorithm [4].  Both the QUEST Algorithm and 
Factored Quaternion Algorithm take a set of the 
accelerometer and magnetometer measurements and 
produce an orientation quaternion.  They are appropriate for 
orientation estimation in static or slow moving applications 
where linear acceleration does not comprise a significant 
part of the total acceleration measurements.  The Factored 
Quaternion Algorithm is computationally about 25% more 
efficient than the QUEST Algorithm.   
 

III. KALMAN FILTER IMPLEMENTATION 

In this section, the implementation of the Kalman filter 
based on the process model presented in the previous 
section will be described.  It is noted that although Equation 
(2) is linear, Equations (3) to (6) are nonlinear. As a result, 
an extended Kalman filter must be used.  Additionally, these 
continuous equations must be discretized for digital 
implementations.  

 
A. Discrete Extended Kalman Filter 
 Equations (2) to (6) can be written in vector form as 
follows: 

   ( ) ( )x = f x + w t .       (8) 

This nonlinear state equation is linearized along the 
currently estimated trajectory x̂ : 

  ( )∆ ∆
x=x

f
x = x + w t ,

x
∂

∂ ˆ

     (9) 

where the actual trajectory, x , is the sum of estimated 
trajectory x̂ and the small increment x∆  

      ˆx x x= + ∆ .  (10) 

Equation (9) is linear, but it is still in the continuous time 
domain.  The next step is to discretize it to obtain a discrete 

w 
1
τ

∫ 1
2

q q= ⊗ω ∫ q
q

ω q q̂

+  
−  

Figure 1.  Kalman Filter Process Model. 



time process model.  Let be the sampling interval.  Then 
the difference equation corresponding to the differential 
equation (9) is given by: 

t∆

1( ) ( ) ( )k k k kx t x t w+∆ = Φ ∆ + t  (11) 

where the discrete state transition matrix is: 
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and the elements of discrete white noises are given by: 

( )

( )

( )
k+1k+1

i

k

t -γt -
τ

i
i k t

1,2,3

4,5,6,7

e w γ  dγ i =
w t =

0 i =

⎧
⎪
⎨
⎪
⎩

∫  (12) 

Equation (7) is linear. Thus, linearization is not needed.  
The corresponding discrete process model equation is 
simply given as: 

           (13) k k kz H x v= + k

 A standard discrete Kalman filter may now be designed 
for the discrete process equation (11) and the discrete 

measurement equation (13).  A complete diagram of the 
extended Kalman filter is depicted in Figure 2. 
B. Modeling of Process and Measurement Noises 

In order to implement the Kalman filter described 
above, it is necessary to determine values of the process 
noise covariance matrix Q  and the measurement noise 

covariance matrix . These matrices represent the 
confidence in the system model and the measurement data, 
respectively.  

k

k
R

The process noise matrix Q  is given by: 
k

( ) ( )T

k k kQ = E w t w t⎡ ⎤⎣ ⎦  (14) 

where E is the expectation operator, and w(  is the 
discrete white noise of Equation (12). 

kt )

It is noted that ( )i
w  in Equation (12) is the 

continuous, independent white noise process of Equations 
(2) to (6), with zero mean and variance . Therefore, 

γ

i
D

   ( ) ( ) ( )i
i j

D δ t - τ i = j
E w t w τ =

0 i ≠
⎧

⎡ ⎤ ⎨⎣ ⎦
⎩ j

 (15) 

This implies that the process noise matrix is a diagonal 
matrix with non-zero elements only in the first three 
positions of the main diagonal, and can be computed using 
Equations (14) to (15) as 
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where  and q are given by: 
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Up to this point, the variance of the white noise 
processes 

i
D  and the time constants of the process model 

τ i have been assumed known. To implement the Kalman 
filter, these parameters must be determined. 
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Figure 2.  Diagram of the extended Kalman filter. 



Figure 3.  Simulated angular rate (left) and actual angular rate 
measurements (right). 

Using measurement data available from the MARG 
sensors, the variances and time constants can be found using 
a simulated process model for the angular rates, where the 
variance and time constants are adjusted until the output of 
the simulated model closely matched the real data collected 
from the MARG sensors. For this purpose, a sensor was 
attached to the arm of a person and typical arm motion data 
was collected.  

The resultant variances and time constants are shown in 
Table 1, where ,  and  are respectively the angular 
rates about the x, y, and z body coordinate axes. 

1
ω 2ω 3ω

 

Angular 

rate 
Variance  

(

iD
2 2rad s ) 

Time constant 

 (s) iτ

1ω  50 0.5 

2ω  50 0.5 

3ω  50 0.5 

 
Figure 3 shows a comparison between the simulated 

angular rates and the actual angular rates obtained from a 
MARG III sensor for typical arm motions. The graphs to the 
left represent the angular rates generated by the simulation 
model. The graphs to the right are the angular rates 
measured by a MARG sensor.  It can be observed that the 
two sets of data exhibit similar characteristics. 

The measurement noise covariance matrix 
k

R  
represents the level of confidence placed in the accuracy 
of the measurements, and is given by:  

( ) ( )T

k k kR = E v t v t .⎡ ⎤
⎣ ⎦  (19) 

Assuming that measurements are uncorrelated, Equation 
(19) leads to the following expression for the 
measurement noise covariance matrix: 
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 The diagonal elements are the variances of the 
individual measurements, which can be determined 
experimentally using measurement data from the MARG 
sensors. For this purpose, the measurements from a static 
MARG sensor were collected.  Table 2 summarizes the 
values derived from experimental measurements. 
 
Table 2.  Elements of the measurement noise covariance 
matrix. 

11r  22r  33r  44r  55r  66r  77r  
0.01 0.01 0.01 0.0001 0.0001 0.0001 0.0001

 
 

        Table 3.  Convergence of the quaternion estimate. 
Table 1.  White noise variance and the time constant 
of the linear system. Sample 

0q̂  1q̂  2q̂  3q̂  

1 0.99985 0.0082135 0.0066032 0.01357 

2 0.99991 0.0057585 0.0049037 0.011901

3 0.9999 0.0055983 0.0048826 0.011882

4 0.9999 0.005288 0.0046884 0.011784

5 0.9999 0.0052297 0.0046353 0.011506

 
IV. MATLAB IMPLEMENTATION AND TESTNG 

After deriving all the required parameters to initialize 
the Kalman filter, it was implemented using MATLAB to 
test the performance and accuracy of the quaternion 
orientation estimates produced by the extended Kalman 
filter. Real world data recorded using a MARG sensor was 
used in these tests. 

Since the Kalman gain was determined such that the 
sum of squared errors is minimized, one way to measure the 
performance of the Kalman filter is through examination of 



Figure 4.  Trace of the error covariance matrix. 

Figure 5.  Quaternion estimates produced by the Factored 
Quaternion Algorithm (left) and Kalman filter (right) with 
a 90-degree rotation in pitch axis. 

the trace of the error covariance matrix .  Figure 4 shows 

the trace of P  for the first 200 samples of data obtained 
with the sensor in its reference position (x axis pointing 
north, y axis pointing East, and z axis point down). It is 
noted, that the sum of squared errors reaches a steady state 
after approximately 60 iterations. 

k
P

k

 
Table 3 shows the elements of the quaternion for the 

first five samples. The initial estimate was chosen to be the 
unit quaternion (0.5, 0.5, 0.5, 0.5). The actual position of the 
sensor in the reference position is represented by the 
quaternion (1, 0, 0, 0). The data shown in Table 3 indicates 
that the Kalman filter estimate converged to the actual 
position in a single iteration. 

While both the QUEST Algorithm and the Factored 
Quaternion Algorithm worked well for static orientation and 
slow movements, the objective of the Kalman filter is to 
blend angular rate measurements with the estimates 
produced using magnetometer and accelerometer data 
during periods in which the sensor module is subjected to 
motions involving high angular rates and large linear 
accelerations. To verify the estimation accuracy during such 
periods, the orientation estimates of the Kalman filter were 
compared to the estimates produced using only the Factored 
Quaternion Algorithm with no rate measurement. Two kinds 
of experiments were conducted for this test. The first used 
controlled rotations produced by a HAAS precision tilt 
table. The second used a random motion pattern produced 
while the sensor was attached to the arm of a person. 

In the first set of experiments, the sensor was initially 
placed at the end of a 1-meter pole attached to the rotating 
table with its xyz axes aligned with West-North-Down 
directions. The sensor was rotated 90º about the y-axis at a 
rate of 60º/s and then rotated –90º at the same rate (in the 
reverse direction). Figure 5 shows the performance of the 
Kalman filter in estimating the orientation of the sensor. The 
graphs to the left show the orientation estimated by the 
Factored Quaternion Algorithm, and the graphs to the right 
show the orientation estimated by the Kalman filter.  It can 
be seen that the Factored Quaternion Algorithm was able to 

correctly estimate the pitch angle before the first (positive) 
rotation, between the first and second rotations, and after the 
second (negative) rotation, but it is not able to correctly 
estimate orientation during the rotational motions.  Large 
errors in roll and yaw were also produced by the Factored 
Quaternion Algorithm.  On the other hand, it can be seen 
from the right-center plot that the Kalman filter was able to 
correctly estimate the pitch angle throughout the duration of 
the experiment.  The small roll and yaw motions seen in the 
top-right and bottom-right plots are due to misalignment of 
the individual sensor components within the MARG sensor 
module. 

Figure 6 shows the results of an experiment in which 
the sensor was rotated randomly while attached to the arm 
of a person.  Although there is no true reference in this case, 
it can be seen that the Kalman filter eliminated the jittering 
and spiking contained in the orientation estimates produced 
by using the Factored Quaternion Algorithm alone. 

 
V. REAL-TIME TESTING RESULTS 

 
After initial testing of the extended Kalman filter with 

the MATLAB implementation, the Factored Quaternion 
Algorithm and extended Kalman filter algorithm were 
implemented in Java for real-time testing and evaluation. 
The real-time quaternion produced by the Kalman filter was 
visualized by a human-like avatar called “Andy” as seen in 
Figure 7.  Two MARG sensors were used to track the 
motion of a human arm, one sensor being attached to the 
upper arm and the other attached to the lower arm. 

The Factored Quaternion Algorithm was able to track 
the motion of the human arm under slow moving conditions 
where linear acceleration was not significant.  However, 
when the arm motion became faster, the algorithm was not 
able to follow the arm motion resulting in observable lag as 
well as overshoots. 



Figure 7.  A snapshot of real-time testing. 

Figure 6.  Quaternion estimates produced by the Factored 
Quaternion Algorithm (left) and Kalman filter (right) with 
random arm movements. 

When the extended Kalman filter was integrated with 
the Factored Quaternion Algorithm, the avatar was able to 
successfully track the human arm motion in real time under 
all conditions.  Furthermore, the filtering process did not 
produce any noticeable lag. Movement of the human arm 
and the avatar was synchronized. 
  

V. CONCLUSIONS 
 The paper presents implementation and experimental 
results for a quaternion-based Kalman filter designed for 
real-time human body motion tracking using the MARG 
sensors.  A simple process model designed for human body 
motion tracking was first introduced.  The model was then 
linearized and discretized.  Experimental determination of 
error covariance matrices was described. An extended 
Kalman filter was implemented, first in MATLAB for 
offline evaluation and finally in Java for real-time testing 
and evaluation.  The estimated orientation quaternion was 
visualized using a human avatar.  Testing results indicated 
that the Kalman filter performed satisfactorily for tracking 
motions of a human arm in real time under all conditions. 
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Absfmcf-Real-time tracking of human body motion has 
applications in tele-operation, synthetic reality and others. 
A motion tracking system based on use of the MARG 
senson has been under development at Navsl Postgraduate 
School and Miami University. The Magnetic, Angular Rate, 
and Gravity (MARG) sensor modules use B combination of 
three orthogonal magnetometers, three orthogonal angular 
rate sensors, and tbree orthogonal accelerometers to 
measure 3-D orientation of individual limb segments in 
order to determine posture. This paper presents the latest 
results of the MARG human body motion tracUng system. 
The design and implementation of a Control Interface Unit 
(CIU), a real-time 3-D human avatar called “Andy,” and a 
concurrent client-server program are discussed. 
Experimental testing and evaluation of the overall MARG 
system is also presented. The system is able to track 
multiple human limbs in real time. Tbe captured human 
motion data can be visualired over the Internet by multiple 
clients usiog the 3-0 avatar. 

KIyvordr - Human body motion tracking; MARC sensols; 
avofor; wireless wmmunication 

I. INTRODUCTION 

Accurate real-time tracking of human body motion is 
important for many applications that involve human- 
machine interactions. One such application is in virhlal 
training [I]. Real-time motion tracking makes it possible 
to create immenive virtual environments in which 
trainees will act and react as if the environments were 
real. Captured human motion data can also be used to 
control humanoid robots [I] [3]. Measurements of human 
body movements can he used to estimate physical and 
mental conditions of patients in clinical applications [4]. 
Motion tracking of human movements is widely used in 
sports training and production of animated movies. 

There are a number of technologies for tracking 
human body motion, including mechanical trackers, 
active magnetic trackers, optical tracking systems, 
acoustic tracking systems, and inertial tracking systems 
[5][6][7]. Among the inertial tracking systems, 
Sakaguchi et al. [8] describes a gyroscope and 
accelerometer-based motion tracking system for tracking 
human ann motion. Lee and Ha [9] reports a study of 
human motion tracking using only accelerometers. There 
are broadly two kinds of image-based motion tracking 
methods. One method requires markers on the tracked 
buman body, and other method does not use nmkers. 

OPTOTRAK from Northem Digital Inc. is a typical 
example of a marker-based system [lo]. Another is the 
motion tracking method developed for the CAVE system 
[ I l l .  Marker-free methods are in general preferred 
because they are less cumbersome [12][13]. In most 
cases, multiple cameras are used to overcome occlusion 
problems and to coushuct 3-D motion data from 2-D 
images [14][15]. 

This paper presents a MARG sensor-based motion 
tracking system. The Magnetic, Angular Rate, and 
Gravity (MARG) sensor modules use a combination of 
magnetometen, angular rate sensors, and accelerometers 
to measure 3-D angular motion of rigid bodies. MARG 
sensors are self-contained, and do not require any 
artificially generated sources. They are conshucted using 
MEMS sensors. As a result, they are small and are 
power-efficient. MARG sensor module design and 
implementation details were presented in [16]. A 
quatemion-based Kalman filter used to process MARG 
data was discussed in [17]. 

This paper presents other components of the MARG 
human motion tracking system, and experimental testing 
results of the overall system. These presented 
components include the Control Interface Unit (Cnr), the 
3-D human avatar, “Andy,” and a client-server protocol 
for transmitting MARG animation data. The CIU is 
designed to provide control signals to and multiplex 
measurement data from multiple MARG sensor modules. 
It packages measurement data from up to 16 MARG 
sensors for wireless transmission using the 802.11b 
wireless LAN standard. “Andy,” the human avatar is a 
cartoon-type avatar developed using X3D [IS] and 
follows the H - A n i  specification [19]. It is specialized 
to allow animation using onentation data expressed 
relative to an Earth fixed reference frame such as that 
provided by MARG sensor modules. The MARG human 
motion tracking system allows multiple clients to 
visualize the captured human motion over the Internet 
using the avatar Andy, supported by the client-server 
program. 

11. MARG SENSORS 
MARG sensor modules are designed to provide data 

for measuring 3-DOF orientation in real time without 
singularities [17]. A more detailed description of the 
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design and implementation of the third generation 
prototype can be found in [16]. The dimensions of the 
MARG III are 28 x 30.5 x 17.3 mm. It weighs 
approximately 8.5 grams (0.3 02). Power consumption is 
144 mW (20 mA) when powered with 7.2 Volts. 
Sampling rate is 100 Hz. The MARG III is fabricated by 
McKinney Technology [20]. 

The MARG ID contains three major sensing 
components. A pair of the two-axis (HhfCl052) and one- 
axis (HMCIOSIZ) magnetic sensors are used for low 
frequency, three dimensional measurement of the 
direction of the local magnetic field vector. A pair of 
two-axis Analog Devices ADXL202E acceleration 
sensors is used for low frequency, three dimensional 
measurement of the gravity vector relative to the 
coordinate frame of the sensor module. A triad of 
orthogonally mounted NECiTOKIN CG-U3 ceramic 
angular rate sensors are used for high frequency 
measurement of sensor module body rates. Two of the 
three sensing components of the MARG llI (the 
magnetometers and the rate sensors) produce analog data. 
The Texas Instruments MSP-430F149 microcontroller is 
a fourth major component in the sensor module. It 
performs the analog-todigital conversion of data and 
transmits digital data to the C N .  Afier collection and 
retransmission by the C N ,  MARG sensor data is 
processed by a filter that takes advantage of the 
complementary characteristics of the installed sensor 
components [17]. 

III. CONTROL INTERFACE UNIT (CN) 

A .  Role ofthe Control Interface Unit 
When completed, the MARG human motion tracking 

system will deploy 15 MARG sensors to track motion of 
15 limb segments. There is a need to multiplex 
measurement data from all 15 MARG sensors and 
transmit them to a network-based computer for 
processing. For this and other purposes, the concept of 
the Control Interface Unit (CIU) was introduced. It is a 
component of the motion tracking system that is designed 
to he wom by the user at the waist or on the back. All 15 
MARG sensors are connected to the C N  by a custom- 
made cable. Through this cable, the CIU delivers the 
power and the clock signal to each of the MARG sensors. 
The MARG senson transmit measurement data lo the 
ClU. The CIU then multiplexes the measurement data 
from multiple MARG sensors, and wirelessly transmits 
the data to a networked PC (server) for processing. The 
wireless transmission is achieved using the IEEE 802.1 Ih 
standard. 

The MARG sensor communicates with the CIU 
through a Universal Synchronous Asynchronous 
Receiver Transmitter (USART) operating in the 
Synchronous Peripheral Interface (SPI) mode. In this 

Figure 1. The One-Chamel Control Interface Unit 
(OneChamel-CRT), 

configuration, the MARG sensor operates as a slave 
device whereas the C N  is the master device. The clock 
signal needed for synchronizing the data transmission is 
delivered to the MARG sensor by the CIW, 

B. The One-channel CIU 
The CIU was designed and implemented in stages. 

A one-channel CllJ was designed and implemented first. 
It connects to one MARG sensor, and delivers the output 
data by a standard RS232 port. An 802.11b wireless 
serial adaptor named WiSER2400.P from OTC Wireless 
Inc. [21] was utilized for wireless transmission of the 
output data to the networked PC. A picture of the one- 
channel CIU is shown in Figure I .  The main component 
of the one-channel CIU is a TI MSP430F149 
microcontroller identical to the one onboard the MARG 
III sensor. 

Figure 2. The Three-channel Control Interface Unit 
(Three-channel Cnr). 

C. The Three-channel CIU 
AAer the one-channel C N  was designed, 

implemented, and successfully tested, a three-channel 
CIU was built. The purpose of the three-channel C N  
was to test motion tracking of multiple limb segments 
with multiple MARG sensors, and to test the operation of 
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the human avatar Andy and the client-server program 
(discussed later). The threeGhamel CIU is shown in 
Figure 2. It is constructed 60m three oneshamel CIUs 
in a parallel configuration. 

D. The Sixfeen-channel CIU 
The MARG motion tracking system is designed to 

simultaneously track 15 limb segments. For this purpose, 
a sixteen-channel CIU was designed. Sixteen rather than 
fifteen was chosen because inpurioutput number of 
multiplexers usually is in power of two. This CIU is to 
multiplex all measurement data from 16 MAUG sensors, 
packages them in a proper format, and transmit them 
using a single wireless communication channel. The 
selected multiplex method was to use a XILINXa 
Spartan’VI XC2SlOO Field Programmable Gate Array 
(FPGA) [22]. The prototype hoard of the sixteen-channel 
CIU is shown in Figure 3. 

Figure 3. Top View ofthe Sixteen-channel Control 
Interface Unit (Sixteen-channel CIU). 

TABLE I. THE SD(TEENGIA“EL C N  OUTPUT FORMAT 

MARG 111 ‘Alive‘ Idenfr8lbn ai3 

The data format used by the CIU shown in Table 1 
consists of 232-byte words, which include the data 60m 
all sixteen MARG Ill sensors and the necessary 
communication overhead. In the event that one or more 
MARG El sensors are not connected or that they transmit 
incorrect data, the FPGA replaces the respective bits with 
zeros in order to keep a constant transmission rate. 

The data for each of the sixteen MARG III sensors 
consists of the measurements 60m the three magnetic 
(Mx, My, Mz), the three angular rate @x, Ry, Rz), and 
the three acceleration sensors (Ax, Ay, Az) onhoard the 
MARG El sensor (nine channels for each sensor). Each 
channel (transmitted in the order of Rx, Ry, Rz, Ax, Ay, 

Az, M x ,  My, Mz) occupies one and a half byte, giving a 
total of 13.5 bytes of data for each MARG In sensor. An 
identification number of a half a byte is added to 
associate the data received with the corresponding 
MARG ID sensor. This W number leads to a total 
payload of 14 bytes for each MARG I l l  sensor. 

An 802.11b wireless LAN OEM module Airbome 
fiom DPAC Technologies [23] was used for wireless 
transmission. The Auhome unit is interfaced to the TI 
microprocessor onhoard the CIU using UART. The data 
transmission rate is 232 khps. 

N. H w  AVATAR ANDY 

Avatar Andy was developed to allow networked 
viewing of human body motion using a web browser. It 
is a cartoon-type avatar created using the Extended 3D 
(X3D) language [IS]. It is a modification of the low- 
resolution avatar named Andybw, developed by 
Seamless Solutions, Inc. [24]. AndyLow was originally 
implemented using the Virtual Reality Modeling 
Language (VRML) and follows the H - h i m  specification 
[19]. It was converted to X3D, an extended version of 
VRML [2S]. Modification of AndyLow was required due 
to the characteristics of orientation estimates produced 
60m MARG data [25]. 

The geometries of all limb segments in the AndyLow 
avatar are described relative to a single unique reference 
frame, located at the center point between the feet. Limb 
segments are manged in a hierarchy radiating from this 
reference point with the segments that are closer to the 
reference being termed “inhoard” of those that are further 
away. Joint rotations for each limb segment must be set 
using an orientation that is relative to the reference 
6ames of each of the more inboard joints. Limb segment 
orientation estimates derived 60m MARG sensor data 
are given relative to an Eartb fixed reference frame. This 
requires that each limb segment be oriented 
independently of all otber segments. For this reason, 
AndyLow was incompatible with the system described 
here. To overcome this drawback, each segment’s 
geometry was redefined using its own local reference 
position with only a connection point to the parent or 
next most inboard segment. 

The H-Anim specification 1191 defines several levels 
of articulation. Highly detailed levels allow for the 
individual animation of minor limb segments such as 
finger joints. Coarser levels only allow individual 
animation of major limb segments such as the upper leg 
or lower am. Level one articulation (LOA-I) is preferred 
for AndyLow. This level offers 18 joints arranged in a 
hierarchical human skeleton structure. The M U G  
system was designed to track up to 15 individual limb 
segments. Avatar Andy fixes the sacroiliac, /-midfarsal 
and r-midtarsaljoints in order to reduce the total number 
limb segments to 15. Figure 4 shows the skeleton 
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structure of the avatar Andy with numbering used to 
represent the joints. Figure 5 shows Andy in a standing 
position 

Figure 4. Hierarchical Skeleton Structure of the Avatar 
Andy. 

Real-time orientation data is supplied to avatar Andy 
through a Java Script node. The node contains a TCP 
socket for handling control information and commands. 
Orientation data is received via a separate UDP socket. 
The avatar is thus capable of controlling all its 15 joints 
in networked virtual environments (NVES). 

- 
Figure 5.  Avatar Andy. 

v. CONCURRENT CLENT-SERVER PROTOCOL 

Networking capability was added to the MARG 
system in order to produce a flexible system with real- 
tune data streammg. Therefore, a concurrent client-server 

program is developed to provide a network interface to 
the system. The concurrent client-server program 
receives MARG sensor data through a UDP socket and 
delivers the data to the clients on the wide area network 
(WAN) simultaneously. Delivering the same motion data 
to multiple clients simultaneously is implemented by a 
method called Multicasting Using TCP and UDP 

Multicasting is the most efficient way of transmitting 
information among a large number of group members 
spread out over different networks. Reduced network 
bandwidth use is the major advantage of using 
multicasting protocols. Unfortunately, most routers on 
the Internet are not configured for multicasting. A 
technique called tunneling is used to overcome this 
problem. Tunneling is a software solution that m s  on 
the end point routerslcomputers and allows multicast 
packets to traverse the network by putting them into 
unicast packets. MUTUP overcomes the tunneling 
problem using shared memory in the server and a unicast 
TCP and UDP messages between the server and each 
client. The major disadvantage of MLTTUP is a limitation 
on the number of clients that can he handled by the server 
at any time. This limitation is caused by an increase in 
load on the CPU and additional memory consumption for 
each client. Low performance or out-of-memory 
problems may occur if the server must handle too many 
clients. MUTUP also uses greater network bandwidth 
than multicasting because separate update messages must 
he sent to each client. Since a relatively small number of 
clients are expected in the MARG project, MUTUP was 
chosen as an altemative method to the multicasting 
protocol despite its drawbacks. 

MUTUP uses shared memory in the server program 
for storing the latest motion data. Clients request TCP 
connections from the server. The server accepts the 
requests and creates a separate thread for handling each 
of the connections. The TCP connection is used for 
general-purpose communication. The TCP protocol is not 
appropriate for data streaming due to increased latency 
and overhead. Therefore, a second connection based on 
UDP sockets is established between the client and the 
server. The server program asks the client to create a 
UDP socket and send the IP address and the LJDP port 
number of this socket back to the server. The sewer adds 
the IP address and the UDP port number of the client as a 
destination for the packets sent by the server program. 
To provide the same motion data for all connected clients 
simultaneously, a shared memory array that always stores 
the latest update is created on the server program. An 
updater thread updates this array. All client handler 
threads access this array at any time they want. A 
diagram of hfUTUP is provided in Figure 6. 

Protocol (Mvnm) [ZS]. 
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Figure 6. Concurrent Client Server Communication 

VI. TESTING AND EVALUATION 

The performance of the individual MARG sensors 
was tested fmt. Each MARG sensor produces nine 
components of raw measurement data at the rate of 100 
Hz. The raw measurement data are processed by the 
filter algorithm 1171 to produce a quaternion 
representation of orientation. For plotting purposes, 
quatemions are converted to Euler angles (roll 'p, pitch 0 
and yaw w). Figure 7 shows the output of the MARG 
sensor as it performs a 720" rotation (roll e)  about its 
longitudinal axis. It is seen that the sensor stans from a 
zero roll. When the motion starts, the sensor responds 
with a linear rotation toward negative 180". The plot 
displays angles within the range of negative 180" and 
positive 180". Therefore, a sudden transition from 
negative 180" to positive 180" appears. In reality, the 

sensor continues to rotate with a constant angular rate 
until it reaches a full 720' rotation and then stops. A 
slight pitch deviation and a0 even smaller yaw deviation 
are also observed. 
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Figure 7. Response of MARG Sensor to 720'Roll Motion. 

The real-time performance of the overall tracking 
system was evaluated in connection with the human 
avatar Andy. Two MARG sensors were attached to an 
arm of a user, and connected to the three-channel CIU. 
The C N  then wirelessly transmitted the sensor data to a 
network-based server computer. The sensor data were 
filtered, and the resulting orientation quatemions were 
transformed into axis-angle pairs. This transformation 
was necessary since the avatar was created using the 
X3D language, which has been standardized to use axis- 
angle pairs to represent rotations. 

Testing results with the full-body avatar were very 
successful. With the use of two MARG III sensors, the 
avatar followed the motion of the human right arm 
exactly. Figure 8 and Figure 9 show two snapshots of the 
testing scene. The user moves his arm, and the motion is 
followed in real time by the avatar. 

W. CONCLUSION 
The paper presents the system components of a body 

motion tracking system based on MARG sensor modules 
and testing and evaluation results for a prototype three- 
sensor system. The components presented include a 
Control Interface Unit, a human avatar, and a 
ClientiServer protocol for transmining animation data. 
The CIU packages data from up to 16 MARG sensors for 
wireless transmission. The ClientiServer program 
receives MARG sensor data and delivers that data to 
multiple clients simultaneously. The avatar allows 
networked tiewing of animations produced using MARG 
data in real time. Tests of a prototype three sensor system 
indicate that these components provide the necessary 
infrastructure to suppon a 16 sensor system for full body 
tracking. 
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Figure 8. Avatar Andy and the User in Real-Time 
Testing. 

Figure 9. Another View of Avatar Andy and the User in 
Real-Time Testing. 
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